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Basic issues in modelling industrial data 
 

In recent years there have been intensive 
developments in data acquisition instruments. 
Many of these instruments are within the optical 
and radio areas. In the optical area there are 
many new and advanced types of instruments. 
An example of a popular instrument is a NIR 
(Near Infra-Red) instrument. One sample 
obtained by the instrument gives typically 1056 
values (absorbance at specific wavelengths), 
corresponding to 1056 variables, but there are 
NIR instruments that can give say, 8000 values 
as a result of one sample. Other examples of 
optical instruments are IR, NMR, RAMAN. 
Typically for these instruments are that they give 
thousands of values for each sample they 
measure. This situation is appearing more and 
more clearly in applied sciences. This is creating 
a shift in the paradigm in applied sciences. The 
traditional methods within statistical and 
numerical sciences to analyse data characterised 
by thousand of variables are not very efficient. 
The weaknesses of these sciences in analysing 
these types of data are of different kinds, some 
of which are considered closer here.  
 In order to meet the challenges of these 
new developments in the data acquisition area 
there has been developed a new methodology to 
handle these types of situations. It has been 
called the H-methods. The name has been 
chosen because of the close analogy with the 
Heisenberg uncertainty principle in quantum 
mechanics. When modelling data with many 
variables the mathematical model is the tool we 
are working with. In the modelling steps the 
mathematical model starts to interfere with the 
data in a similar way as prescribed in the 
Heisenberg uncertainty principle. 
 The H-methods are recommendations of 
how we should solve mathematical models, 
when data are uncertain. The basic idea is to 
carry out the modeling task in steps, where at 
each step we seek find an optimal balance 
between the fit (or an improvement of the 
solution) and the associated prediction. 

Associated with the H-methods there have been 
developed very general algorithms that build up 
solutions in terms of rank one parts. Each of the 
parts is a result of optimization task involving fit 
and precision, such that all parts are in certain 
sense optimal at the respective step of the 
analysis. The H-methods provide with a 
conceptual basis for some of the chemometric 
methods. The procedure can also be applied to 
most numerical methods for data analysis, which 
are based on multivariate analysis, to judge the 
performance of the solutions that these methods 
give. 
 The H-methods have been developed by 
the author since 1992 and applied to different 
types of industrial data. The methodology has 
been used to develop new algorithms and 
analysis methods to handle industrial data 
containing many variables. Some of the basic 
issues of modelling data are discussed in the 
light of these developments. 
 When modeling industrial data, there are 
certain modeling issues that are fundamental for 
successful analysis. The important ones are the 
following five. 
 
1. Prediction variance. The primary objective 
in industry is the prediction associated with new 
samples. If we assume standard regression 
analysis the prediction variance of a response 
value y(x0) associated with a new sample x0 is 
given by 
 

 Var(y(x0))=σ2(1+x0
T(XTX)-1x0)  

 
≅ |y - ŷ|2 (1+x0

T (XTX)-1 x0) /(N-K) 
 
This equation shows that there are two 
objectives of modelling, both the residual 
variance s2=|y - ŷ|2 /(N-K) and the model 
variation that is given by (1 + x0

T (XTX)-1 x0). A 
successful modelling task must have analysed 
both parts of the prediction variance.  
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2.  Fit and precision. It is a fundamental result 
of multivariate statistics that the least squares fit, 
|y - ŷ|2=yT (I-X(XTX)-1XT)y, is stochastically 
independent of the precision, (XTX)-1 (assuming 
normally distributed data). It means that a 
knowledge of the residual variation, |y - ŷ|2, does 
not provide with any information on the size or 
variation of (XTX)-1. Therefore it is necessary to 
involve the precision, (XTX)-1, in one way or 
another in the modeling task. 
3.  Forward analysis. When there are many 
variables, the emphasis is to obtain a stable 
solution. The exact (or unbiased) solutions often 
have little interest, because they are typically 
unstable in the sense that it may change 
drastically by small and immaterial changes in 
the data. Therefore it is appropriate to find the 
solution by a ‘forward’ procedure similar to the 
one used at the Gauss method of solving linear 
equations. This approach of finding mathe-
matical solutions allows us to judge the solution 
in an analogous way as is possible at the Gauss 
method. 
4. Decrease of error of fit and increase in 
model variation. When the model is enlarged 
(e.g. more variables (dimensions) in linear 
regression), we obtain decrease in the error of 
fit, |y - ŷ|2, but we pay the price of increased 
model variation, (XTX)-1. In the modeling task it 
is important to analyze the price. The analogy 
with the Heisenberg uncertainty principle 
appears here. At a certain stage of computing the 
solution the price becomes too high, even though 
the decrease in the error of fit is in itself 
significant. 
5. Mean squared error. When a mathematical 
model is used repeatedly, like e.g. at on-line 
modeling of data, the mean squared error of 
deviations, (yi – ŷi=observed−estimated), is of 
central importance. The mean squared error is 
the sum of the variance and squared bias. The 
Mallow’s Cp measure is a way to look at the 
situation. The formulae show that the critical 
measures for the success are the dimension and 
the squared bias. The general results are that the 
dimension should be as low as possible and that 
there should be an appropriate balance between 
dimension and squared bias.  

 These five issues are fundamental, when 
modeling industrial data due to the low rank we 
find in data. Even if there are 1000 variables, the 
variation that is important for instance for 
regression analysis is located in say, six 
dimensional subspace that may be identified by 
six score (or latent) variables. It is necessary to 
use the above considerations, the five issues, in 
properly identifying the six score variables. 
 The algorithms based on the H-methods 
have proven their superiority in handling 
industrial data. They compute simultaneously 
the decomposition of the data matrix X and the 
associated generalized inverse, X+. At some 
methods the starting point is a covariance matrix 
S. In these methods the algorithms generate a 
simultaneous decomposition of S and S+. The 
reason for the success is that using the H-
methods is that they find ‘the largest’ possible 
part of X or S, and ‘the smallest’ possible 
dimension that are appropriate, i.e., the fewest 
terms in X+ or S+.  
 The program packages SAS, SPSS, 
BMDP and other popular statistical software 
compute the exact solutions as prescribed by the 
method. The underlying methods are typically 
based on least squares method or maximum 
likelihood. In case there is numerical singularity, 
when computing the solution, the software tells 
about the problem and informs that inference 
from the results may not be reliable. The 
solution is then reduced by significance testing 
until a satisfactory result has been found. This 
standard procedure requires a certain degree of 
overfitting in order to be able to arrive at a 
significant model. There are some problems or 
difficulties, when applying this procedure to 
industrial data. The significance testing is based 
on the residual variation, which can be difficult 
to interpret. E.g., in testing in a too detailed 
model, the residual variation can be due to the 
numerical accuracy of the measurement 
instrument or the number of digits used. But the 
basic problem is that the least squares solution 
does not contribute with any information on the 
precision, (XTX)-1. When we have arrived at an 
appropriate solution by significance testing, we 
do not know of the prediction ability of the 
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solution. For methods based on the maximum 
likelihood principle we also have some practical 
problems that make it difficult or impossible to 
apply to industrial data. In order to illustrate the 
problems let us look at the likelihood function 
assuming the multivariate normal distribution. 
The log-likelihood function is given by  
 
 l(θ,S) = log |Σ(θ)| + tr S Σ–1(θ).  
 
For industrial data the covariance matrix S tends 
to be large (a 100 times 100 is a small 
covariance matrix) and statistically of low rank. 
In these cases finding the solutions to the 
specified parameters can be a very unstable 
numerical process. It is popular procedure by 
many statisticians to estimate the full model and 
test the significance of each parameter by using 
the χ2-distribution. A significance of one 
parameter can be compared to the significance 
value of the χ2-distribution with one degree of 
freedom. But the likelihood function is so large 
and unstable that this procedure typically does 
not give satisfactory results, when working with 
industrial data.  
 The typical situation, when working with 
industrial data, is that we have many variables, 
say 1000, but as far as the regression task is 
concerned the data is located in a low-
dimensional subspace, say 6. The standard 
methods in the statistical program packages do 
not appropriately identify the subspace that we 
should work with. Standard approaches in the 
program packages, when there are many 
variables are Ridge Regression (RR), Stepwise 
Regression (SR) and Principal Component 
Regression (PCR). PCR is usually not 
satisfactory because it decomposes X 
independently of the response values Y. The 
odds that we get the appropriate 6-dimensional 
subspace are very small. RR regularizes the 
numerical task of finding the optimal linear least 
squares solution. The RR solution is typically 
not satisfactory when working with industrial 
data, because we typically have fewer samples 
than variables. There are other reasons for that 
RR does not give satisfactory results. If the H-
methods are applied to RR, it can be shown that 

the full-rank solution that is suggested by RR is 
very inappropriate, when the actual rank is much 
smaller than the number of variables. SR is the 
most used method, when we look at the program 
packages. If the subspace is six dimensional, we 
typically need more variables than six, say 10. 
The 10 variables may give the same results as an 
application of the H-methods would give as far 
as the fit is concerned. But typically the 
precision is worse, which leads to too large 
prediction variances. There are also other 
problems with SR, e.g., that the situation may 
not be robust in the sense that small inaccuracies 
in the measurement values may have large 
influence on the results. Small changes in data 
(e.g. removing 10% of the data) may select a 
totally different set of significant variables. 
 In conclusion we can say that the 
program packages do not provide with 
satisfactory software to analyze industrial and 
scientific data. Also, the proposed methods to 
analyze the data are not satisfactory. We have 
the same story, when we look at the libraries of 
numerical subroutines. They typically compute 
the exact solutions that are unstable and may 
have very low precision. 
 Statistical methods are usually 
concerned with methods based on resampling 
procedures. In statistical terms it is assumed that 
the samples are drawn from specific 
distributions. When working with industrial data 
it is often important to look symmetrically at 
variables and samples. The algorithms 
associated with the H-methods are based on 
weighing procedures for both variables and 
samples. This can be useful, when some parts of 
data are more important than other parts. It may 
be useful to include this experience in the 
modeling task. The people in charge of data may 
have some knowledge of data. It may be 
important to model the data such that the results 
match the knowledge. In some situations, e.g., in 
process control, we want some variables to have 
some given target values. In the modeling 
procedure we want as stable estimates as 
possible for the solution in the light of these 
prescribed values. 
 Many optical instruments produce the 
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measurement result by using an estimated 
model, e.g. a regression model, to produce the 
results. The similar situation holds when using 
models for on-line control. In these situations 
there are three aspects of the modeling task that 
are important. The first one is to work with the 
appropriate part of the data. The second is to 
provide with stable and reliable predictions. The 
third is to be able to check the incoming samples 
for failures. Algorithms based on the H-methods 
satisfy these requirements. The part of data is 
selected that shows covariance. The solution is 
optimized with respect to predictions. And for 
new samples we can check them for failures by 
studying how they are located in score space. 
 Many statisticians work in such a way 
that they specify a mean value structure for the 
given data and the expected random variation 
around the mean values. The use of the H-
methods can supplement this approach well. 
Using it, a stable solution is obtained. 
Furthermore, a study of the score, loading and 
causal plots gives useful insight into the special 
features of the data in relation to the specified 
model. Also, significance testing is more 
reliable, when the parameter estimates are not 
based on severe overfitting.  
 The methods associated with the H-
method generate a latent structure that identifies 
the stable solution. In the literature and data 
analysis practice there are some 
misunderstandings concerning the use of latent 
structures in mathematical modelling. They can 
be traced to the education of people in statistical 
analysis. In e.g., regression analysis people are 
trained to look at the exact least squares solution 
of parameters and the estimated standard 
deviation associated with each parameter in the 
model. A variable can be removed, if it is not 
found significant. When working with latent 
structure we do not have this approach to 
evaluate parameters in the model. There are 
given a collection of variables that generate the 
latent structure, which again produce the 
parameter estimates. The effects of each variable 
on the latent structure and on the parameter 
estimate can of course be studied. And a variable 
can be removed, if it has no or small effects on 

the latent structure. In sciences it is natural to 
ask: Which variables are most significant? In 
science and industry there is a similar situation 
like at the psychiatrist that is measuring the 
mental faculties. All variables are important. The 
issue is the latent structure they generate. If we 
have say, 20 variables, but the latent structure is 
say 5, it can be misleading to show the standard 
deviations derived from the linear least squares 
method.  
 The approaches of the H-methods have 
been used to generate new methods and ideas for 
extensive data analysis. An example is path 
modeling, where the standard regression 
situation is extended to a network of data blocks. 
There can be many starting blocks, where new 
samples are initiated. There can also be several 
ending blocks, where final results are obtained. 
Using this approach we can study how estimated 
samples of the input blocks propagate in the 
network. Other examples of new theories are 
non-linear modeling, multi-way data analysis, 
causal modeling, weighing procedures and 
others. 

The H-methods can be used to provide with 
stable solutions to specialized statistical models 
like e.g. variance components (generalized 
mixed linear models), dynamic models, 
maximum likelihood solutions and others. 
Experience has shown that it is advantageous to 
relax on the exactness of the solution and instead 
seek a stable solution in the light of the given 
data. This is especially important for scientific 
and industrial data due to the typical low rank in 
data. 
 


