
10 Choose a weight vector w 
20 Compute 

score vector: t=Xw 
loading vector: p=Sw 
scaling constant: d=1/(wTp) 
Y-loading vector: q=YTt 

30 Adjust S, X and Y 
S←S-d p pT 
X←X-d t pT 
Y←Y-d t qT 

40 Evaluate results: 
Check if the present set of 
vectors improves modeling. In this 
case go to 10. Otherwise stop the 
algorithm.  

 
Box 1. Numerical steps in general linear 
regression. 

1 General linear models 
In many procedures of applied sciences the starting point is a positive (semi) definite matrix 
S. It might be derived from X as S=XTX. It can also be derived in many other ways. Let us 

consider an example.  
In many engineering applications it is 

desired to formulate special estimation 
requirements in the optimisation task. An 
example is where the task is to minimize the 
expression tr(ΒTFΒ) + |Y - XΒ|2. In this case it 
is desired that both the fit, |Y - XΒ|2, is small 
and also the relative size of the regression 
coefficients, Β, measured by ΒTFΒ. The matrix 
F is a weight matrix that reflects the weights or 
importance of the regression coefficients. If the 
expression is differentiated with respect to Β 
and the result is set to zero, the result is 
FB+XTXB – XTY=0. The solution with respect 
to B is B=(XTX+F)-1XTY=S-1XTY, with S= 
XTX+F. Some methods of Kalman Filtering 
and some other methods in process control can 
be formulated in this way. 

Other types of models can also result in 
this set of equations. E.g., in the analysis of 

variance components in the theory of experimental design, it also appears where F refers to 
the variance components part. 

Box 1 shows how this type of equations can be solved. There is no restriction on the 
weight vector w except that the resulting loading vector p may not be zero, |p|≠0. If S≠XTX, 
the score vectors will not be orthogonal. For further properties of this algorithm see Ref 1. 

In the analysis there are needed the loading weight vectors, r’s. They are defined from the 
requirement that pa=Sva, where S is the original S-matrix. In Ref 2 it is shown that they can 
be computed by the equations 
 
(1)  ra= wa – d1r1(p1

T wa) – … –  da-1ra-1(pa-1
T wa), a=1,...,A. (r1=w1) 

 
Furthermore, it is shown that collecting the vectors in a matrix, RA=(r1, r2, …, rA), and 
similarly for PA, WA and DA, the equation (1) can be written as ( (pa

T wa)=1/da) 
 
(2)  RA = WA (DAPA

TWA)-1. 
 
From this equation it follows that PA

T RA = DA
-1, or pa

Trb=0 for b≠a, and pa
Tra =1/da. It is also 

shown that the score vectors also satisfy ta=Xra, where here X is also the original X-matrix.  
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2 Decomposition of data 
 
It is instructive to look closer at the decompositions that are derived by the algorithms 
presented. The results are expansions of the matrices as follows: 
 

S =   d1 p1 p1
T + …+ dA pA pA

T + … + dK pK pK
T  = PDPT 

S-1 =   d1 r1 r1
T + …+ dA rA rA

T + …+ dK rK rK
T  = RDRT 

X =   d1 t1 p1
T + … +  dA tA pA

T +… + dK tK pK
T = TDPT 

XTY =  d1 p1 q1
T + …+  dA pA qA

T +…+ dK pK qK
T = PDQT 

B=S-1XTY= d1 r1 q1
T + …+ dA rA qA

T +… + dK rK qK
T = RDQT 

Ŷ=XB d1 t1 q1
T + …+ dA tA qA

T +… + dK tK qK
T  = TDQT 

 
Here the vectors are collected in a matrix, e.g., T=(t1,t2,…,tK). D is a diagonal matrix with 
da’s in the diagonal. The decomposition of S is a rank one reduction, meaning that the rank of 
say, Sa is one less than that of Sa-1. (Follows from Sawa=0). For S=XTX+F, with F positive 
semi-definite, algorithms can be seen as approximating the exact solution B. The 
decompositions look the same for any choice of the weight vectors, wa’s. The H-principle 
suggests that an optimal balance should be found between the improvement in fit, dAtAqA

T, 
and worsening of the precision, dAvAvA

T. The main motivation for this approach is the 
prediction aspect of the model.  

Assuming normal distribution, the precision (XTX)-1 and the residuals [YT(I-X(XTX)-1XT)Y] 
are stochastically independent, hence both need to be modelled. In the analysis each term of 
the decompositions is evaluated. A terms are used, if it is judged that further terms do not 
improve the prediction ability of the model. If only A terms are used, the matrix S is 
approximated by SA=d1 p1 p1

T + … + da pa pa
T + … + dA pA pA

T. Similarly S-1 is 
approximated by the first A term, (S-1)A. (S-1)A is the generalized inverse of SA,  
SA (S-1)A SA= SA. 

The way of working with this decomposition is similar to eigen value decomposition of S 
after some rescaling. Assume the decomposition is S=UEU, where U is orthonormal and E 
diagonal. Then P corresponds to (EU) and D to E-1. Thus D corresponds to the inverse of the 
eigen values. The reason for this way of scaling is the numerical precision. New vectors are 
computed like p, p=Sw, where w has length 1, i.e., as range of a unit vector. Thus numerical 
stability is secured, also for very large systems, although e.g., adjustments, step 30 above, may 
be numerically unstable, if one is not careful.  

In the applied analysis the samples are measured, but analysis is based on the score values. 
We shall look closer at the connection between these two types of values. The sample data 
matrix is given by X=TDPT. The ith sample is the ith row of X, xi. It is given by xi = ti DPT. 
Denoting x=(xi)T and t=(ti)T, the relationship can be written as x=(PD)t. We also have XR=T, 
or xiR=ti, which is written similarly as t=RTx. Thus there are given two sets of 
transformations: 

 
Sample space to score space:  t=RTx. 
Score space to sample space: x=(PD)t. 

 
If all components have been selected, A=K, these transformations are one-to-one. But 
typically only A<K components are selected. When a new sample x0 is available, the 
associated score values are computed by the transformation, t0=RTx0. The values of t0 can 
then be compared to the rows of T to see how these new score values are relatively to the 
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present ones. Similarly, if there is given a set of score values, t0, for a sample, the associated 
sample, x0, would be estimated by x0=(PD)t0. A transformation matrix R is computed for 
each sub-group of data and each weighing mode. 
 
 

3 Graphic analysis of data 
In the numerical computations there are computed four sets of vectors, wa, pa, ra, and ta, at 
each step. In the following it is described how one can look at these vectors and how they can 
be used in different types of plots. 
 
• wa, the weight vector. It reflects the emphasis of the analysis. Different weights give 

different regression analysis. In the analysis they are computed as shown above where X 
is the reduced X-matrix, X=Xa-1. In the plots of the vectors we look for if one or more 
variables get small weights for all weight vectors. If one or more of them get generally 
small weights, it is investigated if they should be removed from analysis. 

• ta, the score vector. It is computed as ta =Xa-1wa or ta = Xra. The score vectors define the 
latent structure. They show what has been used of X and how Y can be described. Pair 
wise plots of the score vectors show the variation in the part of data that is being used. 

• pa, the loading vector. It is computed as pa =Sa-1wa. If S=XTX, then pa =XTta. If the X 
matrix has been auto-scaled, and ta scaled to unit length, the loading vector pa can be 
viewed as the correlation coefficients between the original variables and the a-th score 
variable. In the general case where S is any positive definite matrix, a similar 
interpretation is used. Pair wise plots of the loading vectors show the correlation structure 
in data. 

• ra, the loading weight  vector. It is given by pa =Sra. If S=XTX, then ta =Xra. They show 
how pa is derived from the correlations of the original X-variables. Since S0=S, it follows 
that r1=w1. The loading weight vectors are studied in order to know how the original 
variables generate the latent structure. 

 
Figure 2 shows that the vectors wa, pa, and ra are of the same size. It also emphasizes that the 
score vectors ta are used for describing both X and Y, although the primary purpose with the 
analysis is to describe Y. In the applied work much time is spent on analysing how the score 
vectors describe X. Besides the plots mentioned above it can be recommended to look at 
further plots to study the results of the analysis: 
  
• Observed versus computed Y-values. The columns of Y are drawn against the 

corresponding columns of Ŷ=XBA. The graphs are supplied by different measures of how 
good a fit that has been obtained. 

• Y-values against the score vectors. These graphs show the quality of the fit at each step 
of the computations. In case of Stepwise Regression analysis the weight vectors are given 
as wa =(0,0,…,0,1,0,…), where 1 corresponds to the variable selected. In this case the 
graphs are called ’Added variable plots’, Ref 3.  

• Y-values against the residuals. The residuals are given as E=Y-XBA. If the plots of the 
columns of Y against the corresponding column of E show systematic variations, it 
indicates that the modeling task has not been successful.  
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• The Y-residuals. The columns of the residual matrix E are to exhibit random behaviour. 
Therefore, plots, where the y-axis is a column of E and x-axis is e.g., the sample number 
or a score vector, should show random scatter of points.  

 
Note that all the graphical analysis above can be done for any choices of the weight vectors 
wa that have been selected and any positive definite matrix S.  
 
4 Case study. Process data 
 
Process data 
The data that are considered here are process data. They are published in Ref 4. These are 
hourly measurements of 12 x-variables and a quality variable y. The process was measured 
over a period of 289 hours. Thus X is a 289×12 matrix and y a 289×1 vector. Before analysis 
the data are auto-scaled (centred and scaled to unit variance). 
 
Principal Component Analysis, PCA 
It is often useful to study data by PCA analysis. The solution from PCA can be obtained by 
choosing Y=X in the algorithm above. The weight vectors will be the eigen vectors associated 
with the eigen value system XTXw=λw. It can also be computed from the Singular Value 
Decomposition of X. It gives X=AFC, where F is a diagonal matrix, and A and C are 
orthonormal. In this case the score matrix can be computed as T=AF. Both W, P and R are 
proportional to C (i.e. a diagonal matrix times C). The first task is to look at the first four 
score vectors, the first four columns of T. 

Figure 9. Pair-wise plot of the first four score vectors. Upper left no 2 vs 1, upper right no 3 
vs 1, lower left no 4 vs 1 and lower right no 3 vs 2. 
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Three scatter plots in Figure 9 involving the first score vector show a clear sign of grouping in 
data. The grouping corresponds the first score vector is negative and positive. The lower right 
scatter plot shows that score vector no 3 has some special behaviour for values larger than 0.1. 
Score vector 1 and 3 are plotted in Figure 10 versus time. The plot of the first score vector 
shows that there is a clear change in the process variables around time 150. The values are 
positive before that time and negative later. The plot of the third score vector versus time 
shows that there has happened something at around time 150 until time 170. Furthermore, the 
score values are on average slightly smaller after time 170 than before time 150.  

These changes in the process variables are not studied closer here. But an important issue 
is, if these features can be detected by the regression analysis. This is studied closer later. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Upper figure plot of the first score vector vs time. Lower one the third score vector 
vs time, where values larger than 0.1 are marked as +.  
 
Regression analysis 
Figure 11 shows the scatter plots of the response variable versus the first four score vectors. A 
closer study shows that the first four score vectors are significant. The first four score vectors 
explain R2=97.8% if the variation of the response variables. The score vectors account for 
57.8% of the variation of X. 
Figure 12 shows the scatter plot of the observed versus computed response variable, when 
four score vectors are used. A line through (0,0) with slope 45o is drawn in the figure. It 
shows that the fit is fairly good, although there are some points that deviate from the line. 
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Figure 12. Plot of observed versus computed 
values of the response variable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Plot of the values of the response variables against the first four score vectors. 
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 An interesting issue is concerning the scatter plot of score vectors. We know that there 
are some special features in the process data, and the question is if they appear in the scatter 
plot. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Pair-wise scatter plot of the first four score vectors. Upper left no 2 vs 1, upper 
right no 3 vs 2, lower left no 4 vs 1 and lower right no 3 vs 2. 
 
A closer study of Figure 13 show that the grouping we find in the scatter plot of score vector 
no 3 versus no 2 corresponds to the change in the process that happens at time 150 hours. The 
points in the upper left corner of the scatter plot in the upper left part of the Figure 13 
corresponds to the changes in the process between 150 and 170 hours. A plot of the first score 
vector alone will give a plot similar to the lower one in Figure 10. Thus the conclusion here is 
that the plots using the score vectors give the same type of information as the plots given by 
the PCA analysis. But the plots derived from the score vectors of the regression analysis more 
explicitly show the variation relevant for the response variable. 
 
 

Ridge regression 
It can be shown theoretically that the mean squared error of prediction can be reduced by 
allowing a small bias in the estimation. In practical terms it means that instead of working 
with the covariance matrix S=XTX, it can be advantageous to work with S=XTX+kI, where I 
is the K×K identity matrix and k is a (small) positive constant. There exist a number of 
theoretically motivated formulas for computing k, but in most cases they are not appropriate. 
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They give generally too large value of k. Instead k is normally found by cross-validation, for 
instance by a leave-one-out cross-validation. This way of finding k is assumed here.  

The application of the H-method can be formulated as follows. 
 
• Find a weight vector w such that the resulting score vector t=Xw is good for describing Y. 

A balanced description is given by the covariance. Thus it is suggested to find w such that 
 

maximize |YTt|2 = maximize wT(XTYYTX)w, subject to |w|=1. 
 
• When w has been found, adjust S, X and Y by the results found, 
 

S ← S – d p pT,  where p=Sw  and  d=1/(wTp) 
X ← X – d t pT,  where t=Xw   
Y ← Y – d t qT,  where q=YTt 

 
Note that S is reduced by rank one by this procedure. Furthermore, the score vectors (ta) 
will not be orthogonal. A new weight vector w is now found for the reduced matrices X 
and Y.  

  
The weight vector w can be chosen in many other ways than suggested by the H-method. 
Here also the only restriction on w is that the resulting loading vector p may not be zero, 
|p|≠0. 

The value of k is found by leaving-one-out cross validation. The value k=0.0019 is the 
one that give the smallest value of ∑(yi-ŷ-i)2, where ŷ-i is the estimated response value 
associated with the ith sample, when the ith sample is not used in the estimation. The value of k 
is here rather small. We find this often in the case that the effective dimension is small 
compared to the number of variables. The first four score vectors explain R2=97.6% of the 
variation of the response variable and 57.6% of X. Further score vectors do not improve the 
prediction derived from the model. Since the value of k is so small, there will be very little 
difference between the plots obtained from the regression analysis above. Therefore, the 
analogous plots are not shown here.  

Traditionally, the full rank model is used for making predictions. Using all score vectors 
correspond to the full rank solution. The explained variation of that solution is R2=98.3%, but 
it represents a severe overfitting. A consequence of the overfitting can or be judged by using 
that the precision term x0

T(XTX)-1x0 can be viewed as having a distribution that is 
approximately proportional to a χ2 distribution with degrees of freedom, f, equal to the 
number of variables/dimension in X. If four score vectors are used, the precision term has 
mean value proportional to around 4, while if 12 are used, it is close to 12, and the constant of 
proportionality is the same in both cases. Thus, a full rank solution will have prediction 
variances that are around three times larger compared with the ones obtained by the H-
method. 

One can perhaps say that this comparison is not quite fair, because the H-method builds 
up a solution by optimising the prediction and determines when to stop. There in no 
optimisation of prediction, when using the Ridge regression procedure, except for finding the 
Ridge constant k.  
 
 


