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4.3 Case study. The Mushroom 
data.

There are given three groups of data. There are 16 
variables measured for each group. The number of 
samples is 7, 8 and 8 resp. The number of samples 
is relatively small. It means that the results must be 
’clear’ in order to be reliable. 

We shall compare group 1 and 2. The first task 
is to study the variables pairwise. In Figure 4.5 is 
shown the data for the first variable. A Wilcoxon 
test for two samples gives a signficance probability of 
11.2%. Thus, there are not a significant difference in 
the distribution of these two samples for variable 1. 
Therefore, variable 1 is excluded from the analysis. 

Similarly, we find that also variables 2, 3, 9 and 12 
do not show significance across groups. In conclusion, 
we shall only work with 11 variables, the variables 1, 
2, 3, 9 and 12 being excluded.

The first task is to determine the score vectors 
t1=X1w and t2=X2w. The variable 4 has the highest 
Wilcoxon u-value, 3.07. The variables are sorted 
according to the numerical size of the Wilcoxon u-
value. The score vectors based on 5 variables, 4, 6, 8, 
13 and 14 give the highest Wilcoxon value, 3.18. The 
results are shown in Figure 4.6. 

The matrices X1 and X2 are adjusted for the score 
vectors found and the procedure starts over again. This 
time the highest value of the Wilcoxon test is found 
at 11 variables, 1.79. It has a significance probability 

Figure 4.5. Plot of variable 1 for group 1 and 2. ‘o’ is 
group 1, ‘x’ is group 2. Horizontal line the average.

Figure 4.7. Scatter plot of the first two score vectors. 
Points marked by ‘o,’ is group 1, ‘x’ group 2.

Figure 4.6. Plot of the first pair of score vectors. 
‘o’ is group 1, t1, and ‘x’ is group 2, t2. x-axis sample 
number.

Figure 4.8. Scatter plot of the first three score vectors. 
Points marked by ‘o’ is group 1, ‘x’ group 2.
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of 3.6%. In Figure 4.7 is shown the plot of the first 
two  score vectors. It shows that the two groups are 
well separated. 

When determining the third pair of score vectors, 
the highest Wilcoxon value for the new pair of score 
vectors is found, when using only variable 16. The 
value is 0.876 and associated significance probability 
is 19.2%. The results are not significant and therefore 
the third pair of score vectors can be excluded. But 
they may be included here partly because there are so 
few samples and partly because we get clear separation 
in three dimensions.

When comparing group 1 and 3, we find the all 
values of the first six variables in group 1 are larger 
than the values in froup 3. In Figure 4.9 is variable 

x4 (on y-axis) drawn against x1. The figure shows a 
clear separation between the groups. In Figure 4.10 
is shown the first two score vectors. Only one score 
vector is significant. There is not a clear advantage 
here to work with the score vectors, although we get 
a good geometric description of the differences of the 
two groups.

We get simialr results, when group 2 is compared 
to group 3. The first six variables, x1-x6, have larger 
values in group 2 than in group 3. In Figure 4.11 is 
shown the plot of x4 (y-axis) versus x1 for group 2 and 
3. It shows that there is a clear difference between 
these two groups. In Figure 4.12 is shown the plot 
of the first two score vectors.  The first score vector 
is highly significant, the probability is 0.0005. The 

Figure 4.9. Plot of variable x4 versus x1. ‘o’ is group 1 
and ‘x’ group 3.

Figure 4.11. Plot of variable x4 versus x1. ‘o’ is group 2 
and ‘x’ group 3.

Figure 4.10. Plot of the first two score vectors. ‘o’ is 
group 1 and ‘x’ is group 3. 

Figure 4.12. Plot of the first two score vectors. ‘o’ is 
group 2 and ‘x’ is group 3.
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second score vector is also significant. It is based on 
eight variables. The Wilcoxon u-values is 2.47 and the 
probability is 0.007.

The third pair of score vectors are based on two 
variables and have Wilcoxon u-value of 1.10 and 
probability 13.5%. Although the pair is not significant, 
it can be recomended to keep it, because there are so 
few samples. 

When comparing group 2 and 3 it can be 
recommended to use the score vectors. They identify 
the subspace, where the variation of data is located.  

Conclusion
The H-methods identify the subspace that contains 

the variation of each group. H-methods secure that we 
only use the significant part of data for this task. The 
best possible score vectors, for a given set of criteria, 
are found. The results are evaluated to secure that 
they are a significant improvement of the modeling 
task. For the Mushroom data there are clearly defined 
subspaces that identify the groups. There are no 
errors in the classification task. Although the number 
of present samples is very small, we have arrived at 
such clear separation that we are confident that new 
samples will be classified correctly.

Discussion
H-methods have been found superior to other 

methods for multivariate discrimnat analysis that are 
based on measurement data. It is easy to construct data, 
where H-methods may not function well. For instance, 
if all data are located in a spiral in a multidimensional 
space, it may be difficult geometrically to find the 

groups of data on the spiral. But measurement data are 
typically located in an ellipsoid in a highdimensional 
space. In these cases the H-methods are efficient in 
locating the ellipsoids. 

In this section we have used Wilcoxon test for two 
samples. But other tests of significance across groups 
can be used. But the Wilcoxon procedure is efficient 
both when data follow normal distribution and when 
there are some deviations from normality.

What are the disadvantages of the H-methods? 
The main one is that it is based on searches in data. 
At each step we search among variables and find those 
that show significant contribution to the task. Among 
these we use as many as is needed to get an optimal 
solution. In chapter 1 it was shown that one sample 
in group 2 was more similar to group 1 for most of 
the variables. In present analysis it is assumed that it 
belongs to group 1. The methods find the variables 
that supports this. In the figures the sample appears 
only as being relatively extremely located compared 
to the other samples (points) in group 2.

Therefore, it is important to use also other methods 
than H-methods, like the ones described in  chapters 
2 and 3, in order to detect special features in data, 
which do not appear in the discriminant analysis.

Scientists are concerned of finding the variables 
that show difference across groups. This is a different 
problem, which is studied in chapter 6.

In conclusion, the H-methods provide with 
efficient and robust ways carry out discriminant 
analysis on data. The error rate is lower than we see at 
other methods, when the data are measurement data. 
The H-methods have no limitations on the number of 
samples or variables.

Figure 4.13. Plot of the first three score vectors. ‘o’ 
is group 2 and ‘x’ is group 3. 
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