
1 Classification, ideas and concepts 
 
 
Classification methods are one of the most studied methods in statistics and computer 
science. In statistics different methodologies like e.g., maximum likelihood, have been 
applied to classification. The results are different book on classification, chapters in text 
books and journals focussing on the topic. In computer science the challenge has been to 
develop algorithms that are efficient in finding patterns in data, which can be generated 
in different ways like images, signals, sensory information, radio signals and others. In 
this area important algorithms have been developed that show ingenious ways to, as one 
could say, ‘find corners in data’. When working with industrial data, these procedures 
have not been found efficient. There are many reasons for the need of new algorithms 
and methods. Statistical procedures typically assume that the data have full rank. If data 
show reduced rank, stepwise selection of variables is recommended or to base the 
analysis on PCA decomposition of data. Why have the algorithms in computer science 
not been accepted in industry? The reason is that for industry the keywords are: Simple, 
Visual, Stable, Robust and Reliable. The methods used must be simple and applicable by 
different people that may not have the experience of a computer scientist. The classical 
statistical procedures have the possibilities of visualising the results, but they are not 
stable and robust as required by industry. By insisting on that the methods are reliable in 
the sense that the procedures must detect outliers, trends and other developments in data, 
the industry accepts that some methods may be good in ‘a laboratory’, but may not 
satisfy the quality and security requirements needed.  
 The methods presented here are based on the H-principle of mathematical 
modelling. The basic idea is to build up the model in steps, where at each step both the 
required task and the associated precision are evaluated. Optimal solution is selected at 
each step, which secures reliable and stable results. The final solution has thus been 
found by adding parts, where each part has been optimized with respect to the purpose 
of the model. 
 The developed methods have business success both at institutions and industry. 
The success is partly due to that the new methods secure better classification and 
predictions than traditional methods, when applied to industrial data, and partly that they 
provide with graphical analysis of data that effectively shows the inherent variation in 
data. The graphical tools presented here are easily implemented on ‘the production 
floor’ and can be used for on-line control of quality and other tasks.  
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1.1 Industrial data and statistical methods 
 
In industry the data are typically large. It is also 
characteristic for industrial data that there is a high 
degree of redundancy in data in the sense that many 
variables are expressing similar things. Traditional 
methods for classification are based on the multivariate 
normal distribution. These methods can be divided into 
three parts. The first ones are ‘full rank’ methods that 
utilize the inverse of the covariance matrix. Even 
though the inverse can be computed the resulting 
methods are unstable when applied to industrial data. 
The second type of approach is the Principal 
Component Analysis, PCA. Here the covariance matrix 
is decomposed in its eigen value decomposition and the 
resulting components are used. Although this method 
can often be used, there are other decompositions of 
data that are more natural. The third approach that is 
often used is stepwise selection of variables according 
to their discriminating power. When a variable has been 
selected, the data is adjusted for the selected variable. 
The disadvantage of this procedure is that it normally is 
very data dependent. The sequence of variables selected 
for the first part of data may not be the same as for the 
last part. From industrial point of view it is not 
satisfactory to select say, four variables out of 1000 and 
not making use of the possibility of working with more 
stable part of the data. 
 When the H-principle or the H-method is 
used, we work with certain tools that will be explained 
closer. 
 
1.2 Some tools of the H-method 
 
Let us assume that there is given an N time K matrix X. 
Furthermore, there is an external matrix Xe=Xexternal, 
that is an N1 times K. The task is to both characterize 
the data matrix X and to show where it is different 
from the data matrix Xe. For that purpose the columns 
of X, the variables, are weighed by a weight vector w1. 
The resulting vector t, t=w1,1x1+…+w1,KxK =Xw1, is 
called the score vector. If w1=(0,…,0,1,0,…), the score 
vector is a variable. Similarly, there is a weight vector 
w2 for the rows of X, the samples. The resulting vector 
p, p = w2,1x1+ … +w2,NxN = XTw2, is called the loading 
vector. If w2=(0,…,0,1,0,…), the loading vector is a 
sample. The weight vectors w1 and w2 reflect the way 
the analysis is carried out. The scaling constant d is 
computed as d=1/(w2TXw1). When the weight vectors 
and d have been computed, the data matrix X is 
adjusted for what has been selected, 
 
 X ← X – d t pT. 

The data matrices and the vectors are schematically 
illustrated in Figure 1.1. It shows the sizes of the 
vectors in question. From a numerical point of view 
there is large flexibility in the choice of the weight 
vectors. The only requirement to the weight vectors w1 
and w2 is that the 1/d=(w2TXw1) may not be zero. 
Usually, when a new set of samples arrive, X0, the task 
is to find out, if some or all belong to the same class as 
those of X. In that case it is normally desirable to have 
a collection of score vectors T=(t1,t2,…,tA) that 
describe well the special features in X. The basic 
algorithms always compute a matrix V1 such that 
XV1=T. For a new set of samples X0 the associated 
score values are computed, T0=X0V1. The new score 
values are then compared to the values of T to see how 
the new scores are located in the score space. 
 The weight vector w2 can be chosen as the 
score vector t, which has been found by some method. 
In that case, and only in the case that w2 is proportional 
to t, the score vectors will be orthogonal. It simplifies 
the interpretation of loading vectors to have orthogonal 
score vectors. On the other hand it may give more 
efficient results to weigh samples according to how 
they differ from those of Xe. The algorithms also 
always compute a matrix V2 such that XTV2=P, where 
P=(p1,p2,…,pA) are the loading vectors that have been 
found in the analysis. For the new samples X0 the 
associated loading values are computed in the same 
way, X0TV2=P0. The new samples are then identified 
according to the score and loading values found, T0 
and P0. 
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Figure 1.1. Schematic illustration of data and 
vectors 



1.3 Classification and regression 
 
In Figure 1.2 the situation is schematically illustrated. 
As indicated in the picture we are both interested in 
finding score and loading vectors such that they are 
good to use in linear regression and also identify the 
special features of X. Thus the task is to find a weight 
vector w1 such that the resulting score vector t=Xw1 is 
good for regression but also reflects the differences in 
X and Xe. The weight vector w2 can be used to 
emphasize the difference in the samples of X and Xe. 
The corresponding weight vectors for Xe can be 
applied in a similar way to secure a good regression 
model and a clear discrimination from X. 
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Figure 1.3. Plot of Treated and Not 
treated data 

 When a new set of samples X0 is available, the 
task is to identify the group that the samples should 
belong to and the associated prediction of the response 
values Y0. Sometimes it is given that the samples 
belong to the same class as X. In that case it is 
evaluated if the new samples are consistent with those 
of X. 
 
 
1.4 Weight vectors for discrimination 
 
In linear regression the weight vector w1 is found such 
that the score vector is good to use for describing Y. 
Similarly there are needed measures that show how well 
groups of data can be discriminated. The task that 
needs to be handled is discussed in a light of an 
example. Suppose that there are given two sequences of 
data values: 
 
Treated: 107 109 112 114 119 121 128 139 
Not treated: 98 102 103 104 106 109 110 112 113 
 
To what degree ate these two sets of data overlapping? 
The two sets of data are drawn in Figure 1.3, where the 
treated ones are marked with an upward line and un-
treated with a downward line. 
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The figure shows that the values in the Treated group 
tend to be larger. But there is some overlapping. The 
field of non-parametric statistical tests contains efficient 
methods to test for the statistical significance of the 
difference of the distribution of these two data. A 
similar approach can be used concerning the degree of 
overlapping. If the Treated set of data is appended the 
Not treated ones, we get 
 
98 102 103 104 106 109 110 112 113 107 109 112 114 
119 121 128 139 
 
The sorted data are: 
 
98 102 103 104 106 107 109 109 110 112 112 114 113 
119 121 128 139 
 
If the simple correlation coefficient between these two 
data sets, the appended and sorted, is 1, the two sets 
will be non-overlapping. Here the coefficient is 0.981, 
which indicates high degree of overlapping.  
 When there are many variables the weight 
vector can be computed as the correlation coefficient 
between the appended and sorted data for each 
variable. There are of course many other measures that 
can be used. But this has the advantage that if the 
correlation coefficient is zero, there is complete 
overlapping, while if equal 1 there is a complete non-
overlapping. 
 The individual measurements can be replaced 
by their ranks like is done at the non-parametric tests. 
It may have some advantage to work with the ranks 
instead of the original observations. It places the same 
‘importance’ on each measurement value and thus may 
scale down outlier values. Measures like the correlation 
coefficient are sensitive to outlier values, and if there 
are ones, ranks often gives improvements.  
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Figure 1.2. Schematic illustration of ’two class’ classification and 
regression 
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1.5 Transformations 
 
The results of the analysis can be viewed as a 
decomposition of X as follows: 
 
X=TDPT=d1 t1 p1T+…+ dA tA pAT+… + dK tK pKT. 
 
Even though it is possible to compute all K 
components, only A ones are computed or used. The 
weight vectors W1=(w1,1, w1,2, …,w1,A, …,w1,K) tell us 
how the variables have been weighted. Associated with 
W1 there is a transformation matrix V1 that shows how 
the samples map into score values. (V1 is sometimes 
called the causal matrix because it shows how the 
samples transform into the score values in the latent 
space). Figure 1.4 shows schematically the transform-
ation from score space to the sample space. It is easy to 
show that if xi is the ith row of X and ti the ith row of T, 
it follows that xi=(PD)ti. The matrix V1 is generated 
such that XV1=T. From this follows ti=V1Txi. 
 The weight vectors in W2 for the samples 
similarly generate a transformation matrix V2 such that 
XTV2=P. If W2 has not entered the analysis, it has been 
chosen as T, W2=T. In that case V2=T. For any set of 
weight vectors W2 the matrix V2 satisfies V2T=D-1. 
Associated with X there is a generalized inverse 
computed as 
 
X+=V1DV2T=d1v1,1v2,1T+…dAv1,Av2,AT+…+dKv1,Kv2,KT 
 
The generalized inverse X+ satisfies XX+X=X. The 
truncated versions of X and X+ using A terms also 
satisfy this equation. 
 
 
 
1.6 Transformation and views relative to one 
group of data 
 
An important and common analysis is to look at the 
data from the point of view of one class of data. This 
will be explained closer. The transformation matrix V1 
is generated, when analysing the X1-data. The 
remaining data can be transformed using the same 
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Figure 1.5. Transformation relative to one group
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Figure 1.4. Transformations between sample and score spaces

 
transformation V1. This generates two sets of score 
vectors, one set of score vectors T1 that are associated 
with the data and another set of score vectors T10 that 
are projections of other samples into the score space.  
 The next task is to find out if it possible to 
simplify the way the two sets of score vectors are 
shown. One approach to such a task is to find a 
rotation matrix O such that the vectors of T1O are as 
small as possible, while the vectors of T10O are as large 
as possible. The rotation matrix O can be found by 
maximizing the ratio|T10O|2/|T1O|2. The task of 
finding the rotation matrix is illustrated in Figure 1.6. 
 

 

Basis group

 
 

Figure 1.6. Schematic illustration of the projection 

It will not be shown here how the rotation matrix is 
found, but the procedure is illustrated by example. 
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1.7 Graphic analysis of classes 
 
We shall use here the ‘Mushroom data’. The 
mushrooms have been measured on 16 variables. There 
are three groups of mushrooms. There are given 7, 8 
and 8 samples of the mushrooms. The third group is 
clearly different from the first two. There are practical 
problems in separating group one and two. The 
question is if the graphic procedure above can help in 
visualising the difference in the groups. In order to 
show the overall variation in data, a PCA analysis is 
carried out for all the data. The results are shown in 
Figure 1.7.  
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In Figure 1.8 the centre of the data is the mean values 
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igure 1.7. First two PCA score vectors of all the data. 
roups are marked by numbers.  

e can confirm that group number 3 is well separated 
rom the others, while group 1 and 2 are close to each 
ther. The next task is to look at data from the point of 
iew of the first group. 
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igure 1.8. Data viewed from the score space of the 
irst group.  

of the class number 1. The score vectors are found with 
respect to this first class. Other samples are projected 
onto that score space. It means that the samples are 
centred by the mean values of the first group and then 
projected onto the score space. Finally, the score 
vectors are rotated such that the scatter of points 
around the centre is small while the score values of 
group 2 and 3 are far away from the centre. Figure 1.8 
shows clearly that the procedure has been successful. 
Similarly, we see that class no 2 is located around centre 
showing relatively small variation, while the projected 
samples give score values that are scattered around the 
centre, but clearly at a good distance from the centre. 
 In summary, the three groups can be clearly 
separated. But we shall not consider here closer how 
the differences in the groups can be described. 
 
 
1.8 Summary 
 
Here we have presented some basic ideas and methods 
that are a part of the H-method. It has been shown 
how the weighing schemes can be used to ‘optimize’ 
the task at each step. When the final results have been 
found, score values are rotated to give insight into the 
latent structure that is inherent in the data. This 
approach is especially important when analysing 
industrial data. This is due to the relatively low rank 
that we typically find in industrial data. Using these 
methods we can appropriately identify variables and 
samples that are important in describing the differences 
in data across the groups. By using rank one 
approximation to the data it is possible to evaluate the 
data at each step, check for outliers, nonlinearity and 
other features that may be important for a successful 
modelling task. 
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Figure 1.9. Data seen from group no 2. 
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