
Process control. Review of concepts 

 
1.  Introduction  

 
There are several aspects, why many chemical process companies are using NIR instruments for 
process control. The cost savings of NIR measurements are related to improved control and 
product quality. The NIR method produces analysis of certain points of the process. The NIR 
instrument can provide results within few minutes even in few seconds, which is often 
significantly faster compared to traditional laboratory analysis. In batch processes the quality of 
the final product the quality can be obtained several times within a manufacturing cycle, instead 
of analyzing only the quality of end batch. On-line process data can also reveal problems early 
allowing early corrective actions. Also safety aspects can be seen as one of the advantages due 
to intrinsically safe measurement probes and fiber optics. On-line measurements are also 
demanding with respect to instrument and sample handling system design.  The non-contact 
characteristics of NIR measurements are well suited to coping with these variations, and recent 
improvements in optical design have led to devices that are virtually insensitive to both product 
pass height variation and presentation. The NIR instrument provides a lot of data, which is 
nowadays cheap to store, and to send onwards. However, the growth of NIR technology has 
always been dependent on a synergism of technologies, which together provide this powerful 
analytical tool. The lack of development of these technologies may also limit the use of NIR or 
other spectral technologies. The mathematical data handing should be included to this list of 
these vital technologies. 
 
 
Looking at the linear least squares methods can show the problems involved. Suppose the 
response variable, y, represents some quality measure. The linear least squares method is 
looking for a solution, b, such that the measure |Xb-y|2 is minimized. The exact solution is given 
by b=(XTX)-1XTy. For NIR data the matrix XTX will be 1050×1050, but the solution should be 
based on a four or five dimensions. If the number of samples, N, is sufficiently large, we may be 
able to compute this solution, possible using extended precision. But the solution will have 1050 
values, many of which are large, and it will be useless for prediction purposes. 
 
Authors have developed and suggested a strategy called COVPROC (COVariance 
PROCedures), which has been proven to lead stable solutions, when reliable predictions based 
on dynamic process data are needed. The approach chosen here is to use the H-principle of 
mathematical modelling (Höskuldsson (1996)). The basic idea is to carry out the modeling in 
steps and at each step compute a rank one approximation to the solution. This rank one solution 
is based on optimizing the balance between the improvement in fit and the associated precision 
that can be obtained by such an improvement in the solution. Thus, each of the rank one part is a 
result of optimization task involving fit and precision, such that all parts are in certain sense 
optimal at the respective step of the analysis. 
 
2. Linear mathematical models 

Suppose that there are given values of the instrumental variables that have been collected in a 
matrix X. A common assumption in standard linear regression is to assume that the response 
variable can be derived linearly from X apart from small random values that are assumed 
normally distributed. We write it as y=Xβ+ε, or y∼ N(Xβ,σ2I). This indicates that the residuals 
have the same variance, σ2. The linear least squares method is concerned finding the value of β 
that minimizes the measure of fit, |Xβ-y|2 →min. The exact solution, b1, to this task is given by 



b1=(XTX)-1XTy. Sometimes there is a requirement that the solution vector in some sense should 
be as small as possible. This can be included in the optimization task as minimizing the sum 
βTUβ + |Xβ-y|2 →min. The exact solutions are b2=(XTX+U)-1XTy. The matrix U can be the 
unity matrix, I, a constant times the unity matrix, kI, the covariance matrix for the b’s or some 
other positive definite matrix. A common choice for U is kI, where the constant k is chosen by 
some external condition, e.g., the value that gives the smallest leave-one-out predictions. This is 
the popular Ridge Regression method.  
 
There are occasions, where a good value of β, β0, is known, and we want to include it in the 
model. One possibility is (β-β0)TU(β-β0) + |Xβ-y|2 →min. It has the exact solution b3= 
(XTX+U)-1(XTy+Uβ0). There are many other extensions of the basic linear least squares method 
that may be useful to work with, which fit into the framework considered here. But this is not 
considered closer. 
 
When working with dynamic systems we are interested in the changes in time in the solution 
vector. We shall look closer at the Kalman filter approach in finding the solutions. Let Xt be the 
instrumental data up to time t, Yt the response values up to time t, (xt,yt) the sample values at 
time t,  and St= Xt

TXt+U. Then the solution at time t, b2,t, can be written as 
 
 b2,t  = (Xt-1

TXt-1+U+xt xt
T)-1(Xt-1

TYt-1 + xt
 yt) 

  = b2,t-1 + kt(yt – xt
T b2,t-1),     

 
with kt= St-1

-1xt/gt, and gt=1+xt
T St-1

-1xt.  
 
This follows from the rewriting Xt

TXt= Xt-1
TXt-1+ xt xt

T, Xt
TYt = Xt-1

TYt-1 + xt
 yt, and the 

application of the matrix inversion lemma. This leads to the Kalman filter equations 
1. Sample variance: gt=1+xt

T St-1
-1xt. 

2. Kalman gain: kt= St-1
-1xt/gt. 

3. Update the solution: b2,t = b2,t-1 + kt(yt – xt
T b2,t-1). 

4. Update the inverse: St
-1 = St-1

-1 – gt kt kt
T. 

In these equations at time zero S0=U. Otherwise the matrix U does not enter the equations. 
Apart from these equations there may be some further ones on requirements to the solution 
vector. When there are many variables the recursive updating equations tend to give unstable 
solutions. E.g., in the case of NIR instruments S would be 1050×1050. Even if we start with a 
diagonal U, the updating becomes unstable because the difference matrix S-U is typically of 
practical rank 3-6 for NIR data. 
 
The present approach is concerned with finding stable solution in the case the data show low 
rank like in the case of NIR data. The algorithm proposed is independent of U. Thus, U can be 
zero or any other prior choice. The solution is based on the H-principle of mathematical 
modeling that we shall consider closer. 
 
3. The basic algorithm 

H-principle is a recommendation of how we should carry out the modelling procedure for any 
mathematical model: 
1)  Carry out the modelling in steps. You specify how you want to look at the data at this step by 

formulating how the weights are computed. 
2)  At each step compute expressions for i) improvement in fit, ∆Fit, and ii) the associated 

prediction, ∆Precision 
3)  Compute the solution that maximizes the product ∆Fit × ∆Precision 
4)  In case the computed solution improves the prediction abilities of the model, the solution is 

accepted. If the solution does not provide this improvement, it stops.  
5)  The data is adjusted for what has been selected and start again at 1). 



 
The main motivation for this approach is the prediction aspect of the model. When a new 
sample, x0, is available, the response values Y(x0) are estimated from the regression equation. 
The prediction variance for the estimated response values for a standard regression model is, 
 

Var(Y(x0)) = [YT(I-X(XTX)-1XT)Y]×x0
T(XTX)-1x0/(N-K) 

 
Assuming normal distribution, (XTX)-1 and [YT(I-X(XTX)-1XT)Y] are stochastically 
independent, hence both must to be modelled, if we want to control the prediction variance. 
 
The H-principle suggests that we should find a weight vector w that gives us a solution of step 3 
(Höskuldsson (1996)). In the case of linear regression it is shown that the solution is given by 
the eigen vector of the leading eigen value to the eigen value problem, 
 

XTYYTXw = λw  
 
In case there is only one response variable, Y=y, there is a closed form expression for w 
 
 w = XTy/|XTy|. 
 
The next task is to compute the loading vector, p, as p=Sw. The score vector, t, is defined as 
t=Xw. Besides these vectors we need one type more, the transformation or causal vector v. It is 
defined such that p=Sv. Finally a scaling constant is needed, d, where d=1/wTSw. These 
computations are carried out at each step. At the end of the computations the data is adjusted for 
what has been selected.  

 
The algorithm is as follows: 
0. Initialize variables. X0=X, S0=S, Y0=Y, E0=IK, B=0.  
For a=1,2, … , K, 
1. Find the weight vector wa:  

wa is the left eigen vector of (XTY) associated with the largest singular value. 
2. Compute  
 loading vector pa: pa=Sa-1wa,  
 score vector ta=Xa-1wa, 
 scaling constant da: da=1/wa

TSa-1wa. 
3. The loading weight vectors va:  
    va=Ea-1wa,  
    Adjust transformation matrix: Ea=Ea-1-davapa

T 
4. Compute new solution coefficients B:  
    qa=(XTY)Tva. 
    Ba = Ba-1 + davaqa

T,  
5. Adjust S: Sa=Sa-1 – da papa

T. 
6. Adjust covariance: (XTY)=(XTY) - da paqa

T. 
7. Adjust X: Xa=Xa-1- da tapa

T. 
8. Adjust Y: Ya=Ya-1- da taqa

T. 
9. Check if this step has improved the prediction aspect of the model, and if λa or da are not too 

small. If it pays to continue, start a new iteration at 1. 
 
Note that the steps 7. and 8. are not necessary. The score vectors can be computed afterwards as 
T=XV. The covariance (XTY) need not be equal to Xa-1

TYa-1. The covariance is the right hand 
terms in the set of linear equations. See the MATLAB program in Appendix for the 
implementation of the algorithm. 
 



The results of this algorithm are expansions of the matrices as follows: 
 

X  = d1 t1 p1
T + d2 t2 p2

T + …+ dAtApA
T + …+ dK tKpK

T   = TDPT. 
S  = d1 p1 p1

T + d2 p2 p2
T + …+ dA pApA

T + … +  dK pKpK
T  = PDPT. 

S-1 = d1 v1 v1
T + d2 v2 v2

T + …+ dA vAvA
T + … +  dK vKvK

T  = VDVT. 
B  = d1 v1 q1

T + d2 v2 q2
T + … + dA vAqA

T + … +  dK vKqK
T  = VDQT. 

 
Here the vectors are collected in a matrix, e.g., T=(t1,t2,…,tK). D is a diagonal matrix with da’s 
in the diagonal. The decomposition of S is a rank one reduction, meaning that the rank of say, Sa 
is one less than that of Sa-1. (Follows from Sawa=0). Thus SK will be the zero matrix. The matrix 
V satisfies VTP=D-1, or vi

Tpj=δij/di, where δij=0 for i≠j and 1 for i=j. It can also be written as 
(VD½)T(PD½)=I or VDPT=I. The score vectors (ta) are not orthogonal, ti

Ttj≠0 for i≠j. 
 
The idea of the algorithm is simultaneously to decompose S and approximate S-1 with the aim to 
optimize the quality of the predictions derived from the model.  
 
This algorithm is carried out for each time point t. Note, that if U=0, S=XTX and the algorithm 
reduces to PLS regression. In that case the score vectors become orthogonal, TTT=D-1.  
 
We can view the algorithm as an approximation,  
 
    B = S-1 XTY = (d1 v1 v1

T + …)( d1 p1 t1
T + …)Y = (d1 v 1 t1

T + …)Y = (d1 v 1 q1
T + …). 

 
Note that only A terms in the expansions are used. The choice of the weight vector w at each 
step reflects the covariance that is left. The expansion stops, when there is no covariance left, 
Xa

TYa≅ 0. When there are many variables, it is often necessary to be careful in finding the weight 
vector w. A collection of methods has been developed that optimise the choice of w 
(Reinikainen et al. (2003)). 
 
When the algorithm is applied, it is important to auto-scale the data, i.e., to centre data and scale 
to unit variance. The reason is that in step 3) in the recommendation of the H-principle, the 
measure used for improved fit and the associated precision should have the same unit of scales. 
If C1 is a diagonal matrix used for scaling the instrumental data, S1=SC1 and X1=XC1, and C2 is 
a diagonal matrix for the response data, Y1=YC2, the exact solution is derived as  

 
B1=S1

-1X1
TY1 = C1

-1 [S-1XTY] C2 = C1
-1 B C2  or  B = C1 B1 C2

-1 
 
For the approximated solution the same scaling is used, BA = C1 B1,A C2

-1. Note that the 
validation of the model, determination of the dimension A, etc is carried out for the scaled data.  
 
The choice of U should take into consideration the choice of C1 and C2. The important issue is 
that the term βTUβ should have the same unit as the term |Xβ-y|2 for the scaled data.  
 
The algorithm is numerically very stable. The reason is that the vectors pa, ta and va are the 
range of a unit vector. Even though the steps 5. and 6. may turn out to be unstable for arbitrary 
data, they will not cause any numerical problems here, because the data is auto-scaled and the 
terms are well computed.  

The algorithm works with four sets of vectors. The weight vectors W=(w1,w2,…,wA) 
are found such that at each step the prediction of the model is optimized. The score vectors 
T=(t1,t2,…,tA)  show the variation in X that is used for the solution found. The loading vectors 
P=(p1,p2,…,pA) show how S has been decomposed. Finally, the loading weight vectors 
V=(v1,v2,…,vA) show how the loading vectors are derived from S, P=SV. For further properties 
of the vectors see the appendix. 



The MATLAB code for the basic algorithm. 
% ----------- dynam ----------- 
% Data are assumed appropriately centred and scaled 
% 
% 
% INPUT 
% X      The instrumental data 
% Y      The response values 
% XY     Right hand side of a set of linear equations 
%        Note that it need not be equal XTY 
% S      A positive semi-definite matrix 
% A      Desired dimension. If A=0, A is set to K 
% eps    Numerical precision 
% 
% OUTPUT 
% Out.B  The solution vector/matrix 
% Out.W  The weight vectors 
% Out.P  The loading vectors 
% Out.T  The score vectors 
% Out.V  The loading vector vectors 
% Out.Y  The reduced response matrix 
% Out.X  The reduced instrumental matrix 
% Out.Q  The matrix (XY)TV 
% Out.S  The reduced positive matrix 
% Out.Si The estimated inverse of input S 
% Out.D  The scaling constants 
% Out.L  The singular values of XY at each step 
% Out.Ns The dimension actually computed 
% 
% USAGE 
%         [Out]=dynam(X, Y, XY, S, A, eps); 
% 
function [Out]=dynam(X, Y, XY, S, A, eps); 
% 
% ---------------------------------------------------------%  
Initialisation of matrices 
Out=struct('B',[],'W',[],'P',[],'T',[],'V',[],'Y',[], … 
   'X',[], 'Q',[], 'S',[], 'Si',[], 'D',[], 'L',[],Ns',[]); 
[K,K1]=size(S); 
[K2,M]=size(XY); 
if A<=0 
    A=K; 
end 
B=zeros(K,M); 
Si=zeros(K,K); 
E=eye(K); 
W=[];P=[];T=[];V=[];Q=[];D=[];L=[]; 
Ns=0; 
%  
% ---------------------------------------------------------% 
for i=1:A 
    [U1,S1,V1] = svd(XY,0); 
    w=U1(:,1); % The weight vector 
    lambda=S1(1,1);% The singular values 
%             Other types of weight vector can be computed 
%    without changing the other code 
    p=S*w;  % The loading vector 
    d=w'*p;  % =1/w’Sw 
    if d<eps % May not be too small 
       break; % Stop analysis 



    else 
       d=1/d; % The scaling constant 
    end 
    v=E*w;  % Transformation vector 
    t=X*w;        % The score vector 
    q=XY'*v; % Inner product of XY and v 
%  ------------  All necessary vectors have been computed 
    Ns=Ns+1; % Count the dimension 
    E=E-d*v*p'; % Adjust transformation matrix E 
    B=B+d*v*q'; % Solution vector at this step 
    X=X-d*t*p'; % Reduce X 
    S=S-d*p*p'; % Reduce S 
    Y=Y-d*t*q'; % Reduce Y 
    XY=XY-d*p*q'; % Reduce the covariance XY 
    Si=Si+d*v*v'; % Approximate the inverse 
%  ------------ All necessary matrices updated 
    W=[W w]; % Store w 
    P=[P p]; % Store p 
    T=[T t]; % Store t 
    V=[V v]; % Store v 
    Q=[Q q]; % Store q 
    D=[D d]; % Store d 
    L=[L lambda]; % Store lambda 
end 
%  -----------    Store results 
Out.B=B; 
Out.W=W; 
Out.P=P; 
Out.T=T; 
Out.V=V; 
Out.Y=Y; 
Out.X=X; 
Out.Q=Q; 
Out.S=S; 
Out.Si=Si; 
Out.D=D; 
Out.L=L; 
Out.Ns=Ns; 
% 
% 
% ------------- Numerical results can be checked 
%  by removing the comment sign % in column 1: 
%D1=inv(diag(D)); 
%U1=W'*P-D1  % Lower triangular with zeros in diagonal 
%O1=V'*P-D1  % The zero matrix 
%I1=W'*W  % Identity matrix 
% If all dimensions are selected: 
% X    % is zeros 
% S   % is zeros 
% Si   % The inverse of S at entry 
% E    % is zeros 
% O2=T-(T*diag(D)*P’)*V % is zeros 
% X0=T*diag(D)*P’ % Equal to X at entry 


