
Multi-way data 
 
Background. There is considerable interest in multi-way data analysis as 
reflected by recent special issue on multi-way data analysis in Journal of 
Chemometrics2, shows that multi-way analysis is used to approach many 
problems in applied sciences. From mathematical point of view there are 
two practical problems, when handling multi-way data. The first is the 
notation to use. Authors often use special symbols to simplify the notation, 
which sometimes makes the work difficult to read. The other problem is that 
we don’t have geometric interpretations like we often have for matrices. 
Also, some magnitudes like e.g., the inverse or generalized inverse are not 
well defined. Here we shall try to keep notation and formulae simple.  

The H-principle and associated algorithms provide with a natural 
framework to handle multi-way data. Thus, we shall show how we carry out 
the modeling in steps, where weight vectors are found that reflect the 
emphasis of analysis. The weight vectors generate loading vectors, which 
again produce the transformation or causal vectors as shown in previous 
section. The importance of this framework is due to that the standard 
techniques of linear regression analysis (e.g. influence diagnostics, 
bootstrapping) can be carried out in the same way as in a standard regression 
analysis. Furthermore, when the data reduce to two-way data, the methods 
the methods reduce to the respective type of regression analysis, if we have 
X and Y, and PCA, if we only have X.  

Multi-way data are traditionally handled by analysis of variance 
techniques. These methods only specify the mean value structure of the data. 
It is often more informative to use loading/score vectors to study the 
variation in data. E.g., analysis may result in that there is a significant 
interaction, which may be difficult to utilize. Score vectors will show more 
precisely how the variation in data is that has this interaction.  
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Figure 1. Schematic illustration of weight vectors for 
three-way data.
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change (less than 10-5). This method is an extension of the power method of 
finding the eigen vector associated with the largest eigen value.  
 The second is where only one weight vector is found. In this case we 
find the optimal weights independently of the other weight vectors. Let us 
consider the weight vector w1. When multiplied by X it gives the matrix T, 
with tik=Σj (xijk w1j). Following the H-principle we want the covariance 
between X and T to be as large as possible, which is a vector p=(pj), 
 
 pj = Σik xijk tik =  ΣikΣn w1n xink xijk =Σn w1n [Σik xjnk xijk ] = Σn w1n cnj  
 
or p=Cw1, where C=(cnj) and cnj=Σik xjnk xijk, (n,j=1,2,…,J). Maximizing the 
size of p, |p|2, is equivalent to finding the eigen vector corresponding to the 
largest eigen value to the eigen system  
 
  CTCw1 = C2w1 = λ w1,  |w1|=1. 
 
The weight vector found in this way can be compared to the result of the 
previous procedure.  
 As a third method we shall 
look at the case of multi-way 
regression. The situation illustrated 
in Fig. 2. Following the H-principle 
we are looking for a vector t, 
t=X×2w1×3w2, and another u, 
u=Y×2v1×3v2, such that the 
covariance (tTu) is as large as 
possible. The weight vectors are 
found by the same routine as 

described in the first method. We 
have 
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Figure 2. Schematic illustration of three-way
regression analysis.
2n) = Σijkmn  xijk yimn w1j w2k v1m v2n  

 v2n = bTv2 

 until the covariance does not increase 

 is not optimised. In that case it is 
ding loading vector. 



 
Loading vectors. The loading vectors are computed for each mode. They 
are computed by multiplying X by all weight vectors except the one 
associated with that mode. Thus, for given weight vectors, w1, w2 and w3, 
 
p3=(p3i)=(Σjk xijkw1j w2k), p1 =(p1j) =(Σik xijkw3iw2k),p2 =(p2k) =(Σij xijkw3i w1j). 
 
If e.g., w3 has not been optimised, it is computed as w3=p3/| p3|. 
 
Adjustment of X. When the loading vectors have been computed the data 
matrix X is adjusted as 
 
   X ← X - d2 p3⊗p 1⊗p 2,  
where 
   d= 1/Σijkxijkw1jw2kw3i. 
 
The modelling starts over using the adjusted data matrix X. 
 
Causal vectors. Generalised inverse. The causal vectors, the r’s, are 
computed in the same way as specified in the two-way analysis, see [??]. 
The generalised inverse is now given by 
 
   X+ = r3⊗r 1⊗r 2 + … . 
 
When we multiply X+ by X we, must multiply them mode-wise to get the 
identity matrices of appropriate dimension. 
 
Properties of the decomposition. There are some important properties of 
the decomposition that is derived by above procedure. Let X(1)  be the 
reduced matrix, X(1)=X - d2 p3⊗p 1⊗p 2. If we multiply X(1) by say, w3, 
(X(1)×1w3), we get a J times K matrix that is orthogonal to w1 and w2, 
 
  (X(1)×1w3)×2w1 = 0,  (X(1)×1w3)×3w2 = 0, 
 
This follows from the equation 
 
  X(1)×1w3 = X×1w3 – d p1 p2

T, 
 



the property w 1
Tp1=w2

Tp2= w3
Tp3=1/d and the definition of the loading 

vectors. These equations are consistent with the two-way data in the sense 
that they reduce to the respective equations, if one of the mode collapses so 
that the data become two-way data. This result is an important aspect of the 
H-principle. Whatever weight vectors w1, w2 and w3 there have been found, 
the residual data are orthogonal to the weight vectors chosen as shown 
above. The only requirement is that the scaling constant, 1/d, is not the zero. 
In multi-way data analysis this orthogonality is the only thing that is 
generally valid. One can say that in multi-way analysis we leave the area of 
linearity and orthogonality. 
Summary. We have presented an approach to handle multi-way data that is 
a natural extension of standard analysis, where (two-way) matrices are used. 
In fact, the associated algorithms are for loops over the modes, and reduce to 
normal two-way analysis in case of two-way data. It means that if one has 
worked with and is well acquainted with two-way analysis, the multi-way 
analysis is the same type of analysis, just having more modes to work with. 
 The formulae of regression coefficients, predicted values etc. follow 
the same formulae as given in the two-way case. We also have similar 
formulae for influence diagnostics, bootstrapping, etc. see Ref. [??].   
 The approach is consistent with the H-principle that the analysis is 
carried out in steps, where at each step we seek maximising the covariance. 
It has the important property that at each step we seek an optimal balance 
between fit and prediction and results at later step are orthogonal, in 
appropriate sense, to the weights that have used at the step. 
 


