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8 Quadratic models 
 
It is frequently necessary to work with non-linear models. The maximum of a linear 
function is obtained at the boundary of the area of the x-variables. In case we need 
to find the optimal response, it is natural to work with quadratic models. The major 
disadvantage of working with quadratic models is that many parameters are needed 
to estimate the model. And according to the H-principle each parameter has a price. 
If the model is large a big price may have to be paid for estimating the parameters. 
Let us consider this situation closer. Suppose that the theoretical model is given by  
 
(22)  yi = βi'x + x' Ci x + residual,   i = 1,2, ... M. 
 
Here x is a K-vector. If K is equal to 100 we are talking about a model of medium 
size compared to the ones we meet in practice. In that case the number of elements 
in each set (βi, Ci) are 100+100*101/2=5150. For the case of three response 
variables, M=3, there will be 15450 parameters that need to be estimated. In such 
cases it is not feasible to estimate the parameters (βi, Ci) directly. Instead we seek to 
determine directions or components that more adequately can identify the surface 
that describes the response values.  
 
It is appropriate to illustrate the situation closer, where we seek a second order 
surface of lower order than the original proposed model. Consider the mathematical 
model 
 

y = 0.95 x1 + 2.01 x2 + 0.5 x1
2 + 2 x1 x2 + 2 x2

2 + residual 
 
     = (x1 + 2 x2) + 0.5 ( x1 + 2 x2)2 + (- 0.05 x1 + 0.01 x2) + residual 
 

 = t1 + 0.5 t1
2 + t2 + residual, 

 
where 
 

t1= x1 + 2 x2   and t2 = -0.05 x1 + 0.01 x2. 
 
From mathematical point of view we can equally well work with the t-variables as 
the x-variables. It can happen that the residual values are so large that the 
component t2 is not worth keeping, because the sum of t2-values and the residual 
values are of the same size as the residual values alone. One can state that in this 
case the component t1 alone appropriately identifies the surface, in which case we 
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can state that data are appropriately described by a parable in the direction of t1. 
Predictions based only on t1 may be more precise than if we want to base them on 
both t1 and t2. 
 
We can insert the transformation (20), x=PDt into (22). Using RP′D=I, we get 
 
(23)  yi = βi′ x + x′ Ci x = βi′D P R′ x + x′ R P′ D Ci D P R′ x  
 

= (P′Dβi)′ (R′x) + (R′x) ( P′DCiDP) (R′x) = αi′t + t′ Gi t, 
 
where 
 

αi = P′D βi and Gi = P′D CiD P. 
 
If all K components are selected, there is a one-to-one relationship between t and x. 
But in practical applications not all components are normally selected. This means 
that P and R only have A columns, P=PA and R=RA. Note that t here will be an A 
vector. 
 
The criterion of selecting 'quadratic' components 
 
I shall now present a criterion for determining 'quadratic' components. This theory 
is presented in the univariate case in [3] and in the multivariate case in [1]. Here 
only the numerical criterion will be presented. 
 
When the ath component ta is added to the model, there are in fact being added 
(a+1) variables to the model, namely ta, ta

2, tat1,tat2, ... ,tata-1. In order to simplify the 
notation let ⊗  denote the elementwise product of two vectors, e.g. 
 

t1⊗ t2 = (ti1×ti2) = (t11×t12, t21×t22, t31×t32, ... , tN1×tN2). 
 
Using this notation, the following matrices are computed 
 

Vk = Y⊗ tk = (yij×tik),  k = 1, ... , a-1. 
  
 

H = X' ( YY' + V1 V1' + ... + Va-1 Va-1' ) X 
 

Gj = X' Diag(yj) X,  j=1, ... , M. 
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Here Diag(yj) is the diagonal matrix with yj in its diagonal. The numerical task is 
 
(24)  maximize  w' H w  +  Σj [w' Gj w]2      for |w|=1 
 
This is a nonlinear expression in w. It is solved by considering the Lagrangian 
function 
 

f(w) = w' H w  + Σj [w' Gj w]2  - λ (w'w -1) 
 
Differentiating f(w) we get 
 

f '(w) = 2 H w + Σj [2 (w' Gj w) Gj w] - λ 2 w 
 
This shows that a stationary point, f '(w)=0, is given by 
 
(25) w = [H w + Σj(w' Gj w) Gj w]/[w' H w + Σj(w' Gj w)2] 
 
Thus (24) is solved by iterating (25) in the same way as in the case of the power 
method of determining the largest eigenvalue and associated vector. Good initial 
values can be obtained by computing first the largest eigen value and associated 
eigen vector for H and use the eigen vector as a starting vector in the right-hand 
side of (25). Numerical experience on several examples, large and small, has shown 
that convergence is arrived at with the same speed as the normal power method of 
computing eigen values/vectors. I.e. convergence is normally arrived at within 10 to 
30 iterations of (25). 
 
As mentioned above, introducing a new component ta means that there are being 
added (a+1) new variables in the model, namely ta, ta

2, tat1, tat2, ... ,tata-1. Usually not 
all of these variables are wanted in the model, because the 'price' may be too high. It 
is important to look at the results and check which ones should be eliminated. In the 
practical applications (16) is used to check the components. The inequality (16) is 
checked for each numerical component, i.e. for t=ta, t=ta⊗ ta, t=ta⊗ t1, t=ta⊗ t2, ..., 
t=ta⊗ ta-1. In case the inequality (16) is not satisfied for any response variable, the 
corresponding term is excluded in the criterion above. E.g., if (16) is not satisfied 
for t=ta⊗ t1, the term X' ( V1 V1'  ) X is excluded in the computation of H. Then (25) 
is used to iterate a new value w, where the terms in the expression corresponding to 
the variables that were not found significant are excluded. There are situations, 
where (16) is not satisfied for t=ta, or for  t=ta⊗ ta, but the linear and the squared 
terms are not excluded. There are cases where these terms are needed in order to get 
a working solution. See closer the example below on finding the optimal response.  
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The weight vector w can be determined from all of X, from Xi or any other part of 
X. Usually we  use the partition (8) to determine which part of X that should be 
used. This would mean that the first choices are linear models on, say, X1, X2 and 
X3, followed by a quadratic model involving X4, and then again a linear one and so 
on. 
 
The advantage of the criterion (24) is that if all quadratic variables are not found 
significant, the criterion reduces to the PLS criterion (1). Thus we can always check 
if quadratic components are needed when analyzing a block of X. But we should be 
careful in these applications. As mentioned above, many variables are available, 
when we ask for a quadratic surface. The criterion (16) may be satisfied for some of 
them although the surface is not quadratic, because there are so many choices to 
select among. 
 
The traditional approach to quadratic modeling is to work with the original 
variables and estimate the parameters in the model (22). Usually, this approach is 
not satisfactory. The reason is that so many variables are needed to adequately 
identify the surface. This will be illustrated by an example below. These examples 
generally show that the present approach is preferable, even in small models. 
 
 
 
 
9 Some basic variational considerations 
 
There are some basic issues of variational type that are important to be aware of, 
when carrying out experimentation with the purpose of displaying the behaviour of 
response variables. It is concerning the different types of variation that is involved 
in the experimentation. I shall discuss them closer. 
 
In agronomic practice the response value is the actual observation. The agronomic 
people look at the observation in a following way: 
 
Observation = Design effect + Treatment effect + Experimental error  

+ Measurement error 
 
The 'design effect' is the effect on the observational unit due to the specific design. 
One field may be more fertile than another, there may be fertility gradients due to 
the sun, slope of the field, dampness of the soil, there may be boundary effects 



 
 

5

(plants on the boundary may get more sun and wind), there may effects from the 
instruments used in carrying out the cultivation and so on. It is important to be 
aware of that there may be different conditions that may give the final observational 
result. Treatment effect is the one that we usually want to get hold on. Often there 
are many ways to specify the treatment effects. They are the 'factors' that we think 
influence the response value. Experimental error is the variation from one 'plant' to 
a neighbouring one in the agronomic language. Measurement error is the variation 
that we get when we actually carry out the measurement.  
 
In the analysis of data it is important to be aware of these different type of 
variations. When we have an effect it is not always correct to compare the variation 
of this effect to the residual variation. Consider a trivial example. Suppose that we 
have treated 30 patients by some treatments and we measure the variation of the 
patients by their temperature. Now suppose that the temperature has been measured 
by three types of thermometers. Then we have 90 measurements of the temperature. 
Here the variation in the temperature for a given patient is of no interest, because it 
is only a measurement error. Probably the best we can do is to take the average of 
the three temperature measurements and work further with the average values. 
 
10 Approaches to experimental design 
 
The literature on experimental design is extensive, see e.g., [4]. Also fine program 
packages like SAS, MODDE and others have been developed for experimental 
design. In the literature there are some different approaches to experimental design 
that have become a tradition in certain types of areas. There are basically three 
types of considerations, that we shall consider closer. 
 
1o Based on extension of X-data 
Here the design considerations are based on the variation that is present in the X-
data. A representative for this approach is [5]. The numerical variables are typically 
scaled so that the data used in the analysis are just few values (see the examples). 
The basic considerations are 

- specification of center values and extreme values of the variables 
- replicates (multiple measurements) are carried out at center of data 
- mathematical properties are sought for (rotatable, D-optimal etc) 

 
2o Taguchi design 
The Taguchi design were developed  in engineering environments, where there 
were many variables and ‘one experimental run’ relatively expensive or difficult to 
carry out. A representative for this approach is [6]. The basic considerations were 
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- many variables, few levels, few runs 
- orthogonal design 
- at most two level interactions 

These designs were developed quality design environments. 
 
3o Analysis of variance (Agricultural experiments) 
Experimental design has a long tradition in agriculture and animal breeding. [4] is a 
good representative for this approach. The main design considerations are 

- Specification of gradients of ‘yields’ in terms of blocks, plots and 
 subplots. 
- Many levels of each variable and many interactions (Large design matrix)  
- Different types of statistical tests. 

A very extensive literature exists on these topics. 
 
The H-principle suggests modeling to be carried out in steps. Experimental design 
should also be carried out sequentially, where a new step should utilize the 
information obtained at previous steps. Thus we have a fourth approach to 
experimental design: 
 
4o H-principle 
The methodology of the H-principle and the associated algorithm suggests a 
following procedure for carrying out the experimental design. 

- Iterative procedure: First a pilot study, then a new data design and so on. 
- Identify the ‘noise level’ (measurement or experimental variation) 
- Priorities on effects and factors. 

 
These four approaches to experimental design are considered closer in the 
following, where the approaches are illustrated by small examples. First it is shown, 
how the design matrix X is generated from the model for given data values. 
 
 
 
Central composite experimental design. The factorial and star design can be 
combined into one design. Such designs are often called central composite 
experimental design. The design considerations are of three kind: 
 

1. A factorial design for the first part. The design can be full factorial or 
 fractional factorial design or other special types of factorial design (lattice, 
 simplex etc). 
2. A certain amount of center points 
3. Positive and negative extremes of each variable. 
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The first consideration is based on what main effects and interactions are needed. 
The last two are based on getting a reliable model to work with. An example of 
such a design is the following one: 
 
Run  x1 x2 x3  
 1  -1 -1 -1 
 2   1 -1 -1 
 3  -1  1 -1 
 4   1  1 -1 
 5  -1 -1  1 
 6   1 -1  1 
 7  -1  1  1 
 8   1  1  1 
 9  -1.682  0  0 
10   1.682  0  0 
11   0 -1.682  0 
12   0  1.682  0 
13   0  0 -1.682 
14   0  0  1.682 
15   0  0  0 
16   0  0  0 
17   0  0  0 
18   0  0  0 
19   0  0  0 
20   0  0  0  
 

Table 13. An example of a central composite design 
 
The first eight runs will give us estimate of the main effects and interactions. The 
last six ones give us information on the variation of the response variable. And runs 
nine to fourteen will make the model more stable. 
 
Example. Yield of snap beans.  
We shall consider closer the data studied by [5], Khuri et al., pp 188. They use a 
central composite design to investigate the effects of three fertilizer ingredients on 
the yield of snap beans under field conditions. The fertilizer ingredients were 
nitrogen (N), phosphoric acid (P2O5) and potash (K2O). The coded variables are 
 

x1=(N - 3.62)/1.59, x2=(P2O5 - 1.78)/0.71, x3=(K2O - 2.42)/1.07. 
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The design in Table 13 was used in the field experiment. For the values of the yield 
see Khuri et al, p 190. For these data we are interested in estimating the optimal 
yield of snap beans. There is a clear curvature in data (seen e.g. by plotting the first 
PLS component against the yield). Therefore a quadratic model is a natural one to 
work with. Several standard program are available to analyze this quadratic model. 
I have chosen here to apply the RSREG procedure in the SAS system. The results 
are shown in Table 14. 
 

Degrees 
of Parameter Standard  T for H0: 

Parameter Freedom Estimate Error  Parameter=0 Prob > |T|  
INTERCEPT 1 10.462  0.406  25.756  0.0000 

X1 1 -0.574  0.270  -2.129  0.0591 
X2         1  0.183  0.270   0.680  0.5117 
X3 1  0.455  0.270    1.690  0.1219 
X1*X1 1 -0.676  0.262  -2.578  0.0275 
X2*X1 1 -0.678  0.352  -1.924  0.0833 
X2*X2 1  0.563  0.262   2.145  0.0576 
X3*X1 1  1.183  0.352   3.358  0.0073 
X3*X2 1             0.233  0.352   0.660  0.5240 
X3*X3 1 -0.273  0.262  -1.042  0.3218  

 
Table 14. Results from the RSREG procedure in SAS 

 
 The root mean square error, s, is computed as s=√s2, with 
 

s2 = Σ (yi - _i)2/(20-10) = 0.99196. 
 
The R2-value is 78.61%. It is not very high, but common in field experiments. The 
criterion (16) for redundancy of a variable, or equivalently a t-value of 1.41, is not 
satisfied for three variables in the analysis, x2, x2×x3 and x3

2. Thus these three 
variables create more modeling variation than the variation they explain of the 
yield. Also, besides the mean level, only two variables are significant at the 5% 
level of significance. Therefore, the estimated model has a high degree of 
overfitting, which makes the optimal solution unstable. The estimated model is 
y=a′x+x′Ax. The optimal sample is obtained by differentiating the estimated model, 
giving a+2Ax=0. This gives the optimal solution xopt=(-0.394,-0.364, -0.175), 
which is a saddle point. The associated optimum is yopt=10.502. 
 
It is important to see if the approach in section 8 is able to give a more stable 
estimate of the optimal solution and associated response value. The procedure is 
that first we determine the parable, a+b1 t1 + c11 t1

2. Then X is adjusted for t1 and Y 
is adjusted for the variation due to t1 and t1

2. At the next step we estimate the model, 
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b2 t2 + c22 t2
2 + c12 t1 t2. And again X is adjusted for t2 and Y is adjusted for t2,  t2

2 
and t1t2. Finally, we estimate the parameters in the model b3 t3 + c33 t3

2 + c13 t1 t3 + 
c23 t2 t3. The variation obtained is as follows. 
 
i  ti    ti

2 and ti × tj  
1    6.5600  13.7013  0.1278 0.0137 
2    1.1103   0.1278 11.9499 0.0038 
3    0.1180   0.0137  0.0033 0.3718  
 
   Table 15. Variation explained by linear, squared and cross product terms 
 
The variation explained is (y't)2/(t't) for t=t1, t=t1

2 etc. The requirement for not 
doing overfitting is that the variation explained by a variable should be at least 
2×0.99196 =1.98392 (see (16)). Only three terms satisfy this, t1 t1

2 and t2
2. Thus a 

proper second order surface that the yield projects onto is a parable in t1 and also in 
t2. It is proper to suppress these cross product terms, titj, when estimating the second 
order model in the score variables. This means that we do not use the corresponding 
terms in the expression (24). If we do that we get the following table. 
 
i  ti    ti

2 and ti × tj  
1    6.3068  13.7618  0  0 
2    1.3159   0  11.9499 0 
3    0.1655   0   0  0.3716  
 

Table 16. Variation explained by linear and squared terms 
 
The term t3  is included in order to get a one-to-one relationship between the sample 
and score values. The term t3

2 is included in order to get a unique optimum. 
 
i  ti    ti

2 and ti × tj  
1     0.6795  -1.1678  0  0 
2    -0.3104   0  0.6508 0 
3     0.1101   0   0  0.1298  
 

Table 17. Regression coefficients of linear and squared terms 
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When we similarly solve b+2Ct=0, we get the optimal solution for the score vector 
as topt=(0.2909, 0.2385, -0.4241). With the constant term in the model equal 
10.4624 the optimal response value is yopt=10.5709, which is somewhat larger than 
the first optimum. The transformation matrix (PD) that transforms score vector to 
sample vector is 
 

-0.8054    0.2719    0.5267 
PD = -0.2000   -0.9611    0.1903 

 0.5579    0.0479    0.8285 
The optimal sample value is now xopt= (PD)topt = ( -0.3928, -0.3681, -0.1776)′. This 
optimal sample value is close to the one found by the first approach. There is a 
rather large variation in the data, which is the main reason for that there is so little 
difference between these two approaches. Note that we are working with slight 
overfitting in order to get a unique relationship between sample and score values. 
Figures 4 and 5 show a clear quadratic relationship between the response value and 
the respective score values. Figure 6 shows the relationship between the third score 
vector and the adjusted response values. There is a sign of curvature in data, which 
justifies that we use the third component, although there is a large variation around 
the estimated curve. 
 This example is a small one, but it shows how we work. The transformation 
R is here equal to (PD) because the matrix X has orthogonal columns. If the present 
design is extended with a new sample, the new score vector can be computed as 
t=R′x. For large design this approach gives more stable solution. But often, like in 
this example, we allow some redundant variables in order to get the advantage of a 
one-to-one transformation or a unique optimal solution. 
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Figure 4. Plot of the response value vs the first component 
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Figure 5. Plot of adjusted (for t1) response value vs the second component 
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Figure 6. Plot of adjusted (for t1 and t2) response value vs the third component 
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