
Path modelling

Introduction. The H-principle provides with a natural framework to analyse
a network of data blocks. We shall here describe briefly the basic ideas and
methods behind the path modelling procedures. For numerical details and a
Matlab program, see [??].
 The simplest case of path modelling is a standard regression analysis.
Here we have two data blocks, X and Y. We write X⇒Y to indicate closer
the path. It means that a new sample in X generates an estimate of a new
sample in Y. When the Y-sample is available, it can be compared with the
estimated sample. We say that there is one input data block and one output.
If we have three data blocks, X, Y and Z, we may have the path X⇒Y⇒Z,
which means that a new sample (a row) in X generates an estimate of a new
sample in Y, which again generates an estimate of a new sample in Z. X is
the input data block and Z the output data block.

By symmetry the methods also contain projection along the columns.
Thus, X⇓Y is a projection of the rows of X onto Y. It is the same algorithm
as the one above with X⇒Y but using the transpose of X and Y. The
projection will show us how a new column of X would generate a new
column of Y. When a new column of Y becomes available it can be
compared to the estimated column from X.

The data blocks can make up a path of nodes, where each node
contains two adjoining data blocks. A very general path or network of data
blocks can be analysed. The only condition is that two neighbouring data
blocks have either the same number of variables or the same number of
samples. There can be arbitrary many input data blocks and output data
blocks. The modelling task is to model input data blocks and generate
regression models through the path to each of the output data blocks. Thus
there is a regression model between each pair of data blocks that shows how
the input samples propagate through that data block.

An important aspect of this approach is that most methods of linear
regression analysis can be carried out within this framework, like e.g.
sensitivity analysis, outlier detection, and dimension analysis. Also graphic
tools, like score and loading plots, extend in a natural way. The procedures
are based on projections of one latent structure onto the following one.
These methods can therefore be used to detect (differential) changes in the
latent structure (e.g. in loadings or scores) from one block to another.

The algorithms generate score and loading vectors for each data
block. These are successive projections of previous loading and score

vectors. These score and loading vectors are connected together as specified
by the NIPALS algorithm, developed by H. Wold, see Ref. [??]. We shall
explain the NIPALS algorithm closer in case of standard linear regression.

There is considerable interest in path modelling. In some part of
applied sciences, e.g., social sciences, these methods are the dominant ones.
In industry there is also great interest in these new methods. One data block
can be the status of the production process and output data blocks e.g., the
quality measures at the different stages of the production.

An important aspect of these methods is that they are computationally
very fast. There can be numerous data blocks in the path, and we can define
as starting data blocks any blocks anywhere in the path. Thus we can work
with numerous regression models from different parts (data blocks) of the
network to the output data blocks.

Linear regression and the NIPALS algorithm. Herman Wold, see Ref.
[??], used the name NIPALS (Nonlinear Iterative PArtial Least Squares) for
a common name of a sequence of projections that make up a closed loop. In
the NIPALS algorithm we can start with a weight vector w, scale it to unit
length, then compute t as t=Xw/(wTw) =Xw, a projection of X onto w. The
score vector t is then projected onto Y to generate a Y-loading vector q. The
loading vector then generates a Y-score vector u that is projected onto X.
The resulting vector is then used as a new weight vector w. It is a property of
the NIPALS algorithm that the closed loop projections, where scaling is e.g.,
done where we start, always will converge. It can be shown that the NIPLAS
algorithm always leads to an eigen value system.
 Let us now consider the recommendation of the H-principle. It
suggests that we should find w as the leading eigen vector of the eigen
system XTYYTX w = λ w. It is easy to show that w together with t, q and u,
t=Xw, q=YTt, u=Yq, form a NIPALS set of vectors with λw=XTu. Each of
the vectors is the eigen vector of an appropriate eigen system (XXTYYT,
YTXXTY and YYTXXT). In the numerical computations one vector that is
fastest to compute is found first and the others are computed from the
NIPALS sequence. A schematic illustration of the NIPALS vectors is shown
in Fig. 1.
 When the vectors have been found, the loading vector p is found as
p=XTt/(tTt), and X is adjusted (deflated) for the score and loading vector
found, X←X-tpT. The data matrix Y can be adjusted also, Y←Y-tqT/(tTt).
But this is not necessary, but can be useful, when carrying out significance
testing. When X has been adjusted a new iteration starts by computing a new
set of NIPALS vectors.

F

I
r
c
b

T
c
i
W
t
a
s
W
X
s
W
p
s
b
i
p

X Y

t=Xw

w
λw=X′u

q=Y′t

u=Yq

⇒

p
igure 1. Schematic illustration of NIPALS vectors

n the graphic analysis the vectors t and p represent X. The vectors u and q
epresent the projection onto Y. Thus in studying X, we look at the plots
ontaining t and p, and for Y, u and q. The strength of the relationship
etween X and Y is studied by plotting u against t.

Z

?

hree data blocks. We shall
onsider closer how the above
deas extend to three data blocks.

e suppose that there is given
hree data blocks, X, Y and Z. It is
ssumed that they all have the
ame number of rows (samples).

hen new samples arrive at X,
0, we want to predict the values

chematically illustrated in Fig. 2. No
hen new samples of Y become

redicted one. We can also use it in
eparately. It is quite possible that Y
etter to model X⇒Z directly. It
nvestigate the individual nodes (d
roperly.
X Y⇒ ⇒

X0 ?
Figure 2 Schematic illustration of the modeling task
 of the Y- and Z- samples. This is
te, that we connect X and Z through Y.
available, we can compare it to the
 modeling Y⇒Z, which is developed

is spoiling the modeling task. It may be
is important in the path modeling to
ata blocks) to see if they function

F
b

I
t
m
m

T

W
i
w
a
t

T
t
w
t
f
t

X Y Z

p

w

t=Xw

q=Y′t r=Z′u

u=Yq v=Zr

⇒ ⇒

igure 3. Schematic illustration of NIPALS vectors in case of three data
locks.

n Fig. 3 we show a schematic illustration of the NIPALS vectors for the
hree data blocks. In case of two data blocks the optimization task was to
aximize the size of the Y-loading vector q. A natural extension is to
aximize the Z-loading vector r,

 maximize |r|2 = maximize |ZTYYTXw|2, subject to |w|=1.

he solution is the leading eigen vector associated with the eigen system,

 XTYYTZZTYYTX w = λ w.

hen w has been found the other NIPALS vectors are computed as shown
n Fig. 3. The X-loading vector p is computed and X adjusted in the same
ay as specified above. Then, a new iteration starts. The NIPALS vectors

nd p are used in the graphic studies of modelling task in a similar way as
he case of two data blocks.

wo input data blocks. When we have two input (or starting) data blocks,
he optimization procedure changes slightly. The H-principle suggests that
e should be finding weight vectors w1 and w2, such that the score vectors

1=X1w1 and t2=X2w2 have maximal covariance with Y. The task here is to
ind a weight vector py that together with the vectors w1 and w2 maximize
he covariance, (t3

Tt1)+(t3
Tt2), where t3=Ypy. The situation is schematically

X1

w1

t1

Y

py

X2

w2

t2

t3

Figure 4. Schematic illustration of two input data blocks

illustrated in Fig. 4. In the
maximization procedure we
suppose that each of the weight
vector has length one. The
Lagrangian function of this
maximization task is

f(w1, w2, py) =
w1′X1

T Ypy + w2′X2
TYpy -

λ1(w1
Tw1 - 1) - λ2(w2

Tw2 - 1) -
λ3(py

Tpy - 1)

If we differentiate the function f
with respect to w1, w2 and py, we
get

 X1

TYpy - 2λ1 w1 = 0
 X2

TYpy - 2λ2 w2 = 0
 YTX1 w1 + YTX2 w2 - 2λ3 py = 0

If we solve with respect to py, we get the following set of equations for w1
and w2,

 X1

TYYTX1 w1 + X1
T YYTX2 w2 = µ1 w1

 X2
T YYTX1 w1 + X2

T YYTX2 w2 = µ2 w2

Here µ1 and µ2 are derived form the λ's. These equations show that the w's
are found as eigen vectors of the patterned covariance matrix, (Xi

T YYTXj).
Note that if e.g., t2 does not contribute to the analysis it is dropped.
 Some small changes in the optimization procedure can be
recommended, when the input data blocks are of different types. Suppose
that X⇒Y and Z⇑Y. The situation is schematically illustrated in Fig. 5. If
we look at X⇒Y only, we should find w such that the size of q is as large as
possible. On the other hand, if we only look at Z⇑Y, we should find v such
that u is as large as possible. If we carry out these two optimization tasks
independently of each other, the data block Y is represented by the vectors q
and u. The rank one matrix representing the projection onto Y is given by
uqT/(tTYr). The numerical problem that easily can arise is that tTYr≅ 0. In
that case there is numerical instability in the computations. The way to

s
t
t
b
s
m

f

A

w
o

YX

Z

t=Xw
w

q=Y′t

v
r=Z′v

u=Yr

⇒

⇑

Figure 5. Schematic illustration of two input data blocks, each of different type.

ecure numerical stability is to have only one optimization task. Analogous
o the procedure above we define a Y-score vector as t3=Ypy. We require
hat the score vector generated by X, t=Xw, and the score vector generated
y Z, u, to have maximal covariance with t3. Thus we are to find w, v and py
uch that (t3

Tt)+(t3
Tu), is maximized. The Lagrangian function of this

aximisation task is

(w, v, py) = w TXTYpy + vTZYTYpy - λ1(wTw-1) - λ2(vTv-1) - λ3(py
Tpy - 1)

 similar procedure as above leads to the set of eigen systems,

 XTYYTX w + XT YYTYZT w = µ1 w

 ZYT YYTX w + ZYT YYTYZT v = µ2 v,

here X2 above is replace by YZT. This is solved similarly. Note that instead
f working with the score vectors, we could work with the loading vectors.

Two input and two output data blocks. We shall look closer at the
situation, where we have two input and two output data blocks. The situation
is schematically illustrated in Fig. 6. We have a weight vector for each input
data block. The task is to find optimal weight vectors. Like above we want
the resulting loading vectors at the output to be as large as possible. Let us
look closer how we find the weight vectors.

F
a

b

w

I
l
t

X1

w1

t1

Y

py
t3

X2

w2

t2

Z1

pz,1

Z2

pz,2

igure 6. Schematic illustration of the modelling task including two input
nd two output data blocks.

In analogy with the criteria above we want the sizes of pz,1 and pz,2 to
e as large as possible. Let p=(pz,1, pz,2). Then we can write

 |p|2 = |pz,1|2+|pz,2|2 = |Z1
Tt3|2+|Z2

Tt3|2 = |(Z1,Z2) Tt3|2 = | ZTt3|2

ith Z=(Z1,Z2). The loading vectors at the end of the path are computed as

pz,1 = Z1
TYYT(X1w1 + X2w2) and pz,2 = Z2

TYYT(X1w1 + X2w2).

f we want to find w1 and w2 that maximise the total (squared) size of the
oadings, |pz,1|2+|pz,2|2, it is easy to show using the Lagrangian multiplier
echnique that the weight vectors are found as solutions to the eigen system,

 X1

TYYTZZTYYTX1 w1 + X1
TYYTZZTYYTX2 w2 = λ1 w1

 X1

TYYTZZTYYTX2 w1 + X2
TYYTZZTYYTX2 w2 = λ2 w2

When we extend these considerations to numerous input data matrices, we
notice that the w's are found the eigen vectors of the patterned covariance
matrix, (Xi′YY′ZZ′YY′Xj). Similarly, when we have output data blocks
scattered in the network, we get analogous patterned covariance matrices.

Units of paths. The paths that are allowed can be very general. The
following table shows possible 'units' in paths.

 Paths Interpretation
1 X One block. We get PCA or PCA-types of

solutions.
2 X1 ⇒X2 Two blocks. We get linear regression.
3 X1 ⇒X2 ⇒X3 Multi-block extensions of linear regression.
4 X1

⇓
X2

Multi-block extensions of PCA-type of
solutions with the role of variables and
samples exchanged.

5 X2 ⇒X3
⇑
X1

Here we want the regression to be done with
components generated from X1.

6 X1 ⇒ X2
 ⇓
 X3

Here we want to study possible changes in
the response values even if we have not been
able to observe or measure the
corresponding X-values.

7 X1 ⇒ X2
 ⇑
 X3

Here are two ‘sources’ X1 and X3 that
influence on the data block X2.

These are a few possible parts of paths that the algorithms can carry out.
These models can be combined arbitrarily into a large and complex network.
The only requirement is that the number of samples/variables in two
succeeding blocks, Xk and Xk+1, are correct. If Xk ⇒ Xk+1, the number of
samples (rows) in Xk and Xk+1, is the same, while if Xk ⇓ Xk+1, the number of

variables (columns) must be equal. Note that type 5 in the table can be
interpreted as that we want to be able to predict values in X3 from observing
samples of type X1. It is an example of making predictions of response
variables although we are not able to measure the response variables.
 It is an important aspect of the methods that if we have one input and
one output data matrix, and all matrices are equal, X1=X2=X3=…, we get the
PCA solution for each data matrix. Thus, when there are small changes
between the data blocks, the score vectors found will describe the changes in
the samples and the loading vectors the changes in the variables.

