
Path modelling 
 
Introduction. The H-principle provides with a natural framework to analyse 
a network of data blocks. We shall here describe briefly the basic ideas and 
methods behind the path modelling procedures. For numerical details and a 
Matlab program, see [??]. 
 The simplest case of path modelling is a standard regression analysis. 
Here we have two data blocks, X and Y. We write X⇒Y to indicate closer 
the path. It means that a new sample in X generates an estimate of a new 
sample in Y. When the Y-sample is available, it can be compared with the 
estimated sample. We say that there is one input data block and one output. 
If we have three data blocks, X, Y and Z, we may have the path X⇒Y⇒Z, 
which means that a new sample (a row) in X generates an estimate of a new 
sample in Y, which again generates an estimate of a new sample in Z. X is 
the input data block and Z the output data block.  

By symmetry the methods also contain projection along the columns. 
Thus, X⇓Y is a projection of the rows of X onto Y. It is the same algorithm 
as the one above with X⇒Y but using the transpose of X and Y. The 
projection will show us how a new column of X would generate a new 
column of Y. When a new column of Y becomes available it can be 
compared to the estimated column from X. 

The data blocks can make up a path of nodes, where each node 
contains two adjoining data blocks. A very general path or network of data 
blocks can be analysed. The only condition is that two neighbouring data 
blocks have either the same number of variables or the same number of 
samples. There can be arbitrary many input data blocks and output data 
blocks. The modelling task is to model input data blocks and generate 
regression models through the path to each of the output data blocks. Thus 
there is a regression model between each pair of data blocks that shows how 
the input samples propagate through that data block.  

An important aspect of this approach is that most methods of linear 
regression analysis can be carried out within this framework, like e.g. 
sensitivity analysis, outlier detection, and dimension analysis. Also graphic 
tools, like score and loading plots, extend in a natural way. The procedures 
are based on projections of one latent structure onto the following one. 
These methods can therefore be used to detect (differential) changes in the 
latent structure (e.g. in loadings or scores) from one block to another. 

The algorithms generate score and loading vectors for each data 
block. These are successive projections of previous loading and score 



vectors. These score and loading vectors are connected together as specified 
by the NIPALS algorithm, developed by H. Wold, see Ref. [??]. We shall 
explain the NIPALS algorithm closer in case of standard linear regression.  

There is considerable interest in path modelling. In some part of 
applied sciences, e.g., social sciences, these methods are the dominant ones. 
In industry there is also great interest in these new methods. One data block 
can be the status of the production process and output data blocks e.g., the 
quality measures at the different stages of the production. 

An important aspect of these methods is that they are computationally 
very fast. There can be numerous data blocks in the path, and we can define 
as starting data blocks any blocks anywhere in the path. Thus we can work 
with numerous regression models from different parts (data blocks) of the 
network to the output data blocks. 
 
Linear regression and the NIPALS algorithm. Herman Wold, see Ref. 
[??], used the name NIPALS (Nonlinear Iterative PArtial Least Squares) for 
a common name of a sequence of projections that make up a closed loop. In 
the NIPALS algorithm we can start with a weight vector w, scale it to unit 
length, then compute t as t=Xw/(wTw) =Xw, a projection of X onto w. The 
score vector t is then projected onto Y to generate a Y-loading vector q. The 
loading vector then generates a Y-score vector u that is projected onto X. 
The resulting vector is then used as a new weight vector w. It is a property of 
the NIPALS algorithm that the closed loop projections, where scaling is e.g., 
done where we start, always will converge. It can be shown that the NIPLAS 
algorithm always leads to an eigen value system. 
 Let us now consider the recommendation of the H-principle. It 
suggests that we should find w as the leading eigen vector of the eigen 
system XTYYTX w = λ w. It is easy to show that w together with t, q and u, 
t=Xw, q=YTt, u=Yq, form a NIPALS set of vectors with λw=XTu. Each of 
the vectors is the eigen vector of an appropriate eigen system (XXTYYT, 
YTXXTY and YYTXXT). In the numerical computations one vector that is 
fastest to compute is found first and the others are computed from the 
NIPALS sequence. A schematic illustration of the NIPALS vectors is shown 
in Fig. 1.  
 When the vectors have been found, the loading vector p is found as 
p=XTt/(tTt), and X is adjusted (deflated) for the score and loading vector 
found, X←X-tpT. The data matrix Y can be adjusted also, Y←Y-tqT/(tTt). 
But this is not necessary, but can be useful, when carrying out significance 
testing. When X has been adjusted a new iteration starts by computing a new 
set of NIPALS vectors.  
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igure 1. Schematic illustration of NIPALS vectors  

n the graphic analysis the vectors t and p represent X. The vectors u and q 
epresent the projection onto Y. Thus in studying X, we look at the plots 
ontaining t and p, and for Y, u and q. The strength of the relationship 
etween X and Y is studied by plotting u against t. 
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Figure 2 Schematic illustration of the modeling task
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igure 3. Schematic illustration of NIPALS vectors in case of three data 
locks.  

n Fig. 3 we show a schematic illustration of the NIPALS vectors for the 
hree data blocks. In case of two data blocks the optimization task was to 
aximize the size of the Y-loading vector q. A natural extension is to 
aximize the Z-loading vector r, 

 maximize |r|2 = maximize |ZTYYTXw|2, subject to |w|=1. 

he solution is the leading eigen vector associated with the eigen system, 

  XTYYTZZTYYTX w = λ w. 

hen w has been found the other NIPALS vectors are computed as shown 
n Fig. 3. The X-loading vector p is computed and X adjusted in the same 
ay as specified above. Then, a new iteration starts. The NIPALS vectors 

nd p are used in the graphic studies of modelling task in a similar way as 
he case of two data blocks. 

wo input data blocks. When we have two input (or starting) data blocks, 
he optimization procedure changes slightly. The H-principle suggests that 
e should be finding weight vectors w1 and w2, such that the score vectors 

1=X1w1 and t2=X2w2 have maximal covariance with Y. The task here is to 
ind a weight vector py that together with the vectors w1 and w2 maximize 
he covariance, (t3

Tt1)+(t3
Tt2), where t3=Ypy. The situation is schematically 
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Figure 4.  Schematic illustration of two input data blocks 

illustrated in Fig. 4. In the 
maximization procedure we 
suppose that each of the weight 
vector has length one. The 
Lagrangian function of this 
maximization task is 
 
f(w1, w2, py) =  
w1′X1

T Ypy + w2′X2
TYpy -   

λ1( w1
Tw1 - 1) - λ2( w2

Tw2 - 1) -   
λ3( py

Tpy - 1) 
 
If we differentiate the function f 
with respect to w1, w2 and py, we 
get 
 
  X1

TYpy  -  2λ1 w1 = 0 
  X2

TYpy  -  2λ2 w2 = 0 
  YTX1 w1 + YTX2 w2 -  2λ3 py = 0 
 
If we solve with respect to py, we get the following set of equations for w1 
and w2, 
 
  X1

TYYTX1 w1 + X1
T YYTX2 w2  = µ1 w1 

  X2
T YYTX1 w1 + X2

T YYTX2 w2  = µ2 w2 
 
Here µ1 and µ2 are derived form the λ's. These equations show that the w's 
are found as eigen vectors of the patterned covariance matrix, (Xi

T YYTXj). 
Note that if e.g., t2 does not contribute to the analysis it is dropped. 
 Some small changes in the optimization procedure can be 
recommended, when the input data blocks are of different types. Suppose 
that X⇒Y and Z⇑Y. The situation is schematically illustrated in Fig. 5. If 
we look at X⇒Y only, we should find w such that the size of q is as large as 
possible. On the other hand, if we only look at Z⇑Y, we should find v such 
that u is as large as possible. If we carry out these two optimization tasks 
independently of each other, the data block Y is represented by the vectors q 
and u. The rank one matrix representing the projection onto Y is given by 
uqT/(tTYr). The numerical problem that easily can arise is that tTYr≅ 0. In 
that case there is numerical instability in the computations. The way to   
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Figure 5. Schematic illustration of two input data blocks, each of different type. 

ecure numerical stability is to have only one optimization task. Analogous 
o the procedure above we define a Y-score vector as t3=Ypy. We require 
hat the score vector generated by X, t=Xw, and the score vector generated 
y Z, u, to have maximal covariance with t3. Thus we are to find w, v and py 
uch that (t3

Tt)+(t3
Tu), is maximized. The Lagrangian function of this 

aximisation task is 

(w, v, py) = w TXTYpy + vTZYTYpy - λ1( wTw-1) - λ2( vTv-1) - λ3( py
Tpy - 1) 

 similar procedure as above leads to the set of eigen systems, 

 XTYYTX w + XT YYTYZT w  = µ1 w 

 ZYT YYTX w + ZYT YYTYZT v  = µ2 v, 

here X2 above is replace by YZT. This is solved similarly. Note that instead 
f working with the score vectors, we could work with the loading vectors. 



Two input and two output data blocks. We shall look closer at the 
situation, where we have two input and two output data blocks. The situation 
is schematically illustrated in Fig. 6. We have a weight vector for each input 
data block. The task is to find optimal weight vectors. Like above we want 
the resulting loading vectors at the output to be as large as possible. Let us 
look closer how we find the weight vectors. 
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igure 6. Schematic illustration of the modelling task including two input 
nd two output data blocks. 

In analogy with the criteria above we want the sizes of pz,1 and pz,2 to 
e as large as possible. Let p=( pz,1, pz,2). Then we can write 

  |p|2 = |pz,1|2+|pz,2|2  = |Z1
Tt3|2+|Z2

Tt3|2 = |(Z1,Z2) Tt3|2 = | ZTt3|2 

ith Z=(Z1,Z2). The loading vectors at the end of the path are computed as 

pz,1 = Z1
TYYT(X1w1 + X2w2)  and  pz,2 = Z2

TYYT(X1w1 + X2w2). 

f we want to find w1 and w2 that maximise the total (squared) size of the 
oadings, |pz,1|2+|pz,2|2, it is easy to show using the Lagrangian multiplier 
echnique that the weight vectors are found as solutions to the eigen system, 



 
 X1

TYYTZZTYYTX1 w1 + X1
TYYTZZTYYTX2 w2  = λ1 w1 

 
 X1

TYYTZZTYYTX2 w1 + X2
TYYTZZTYYTX2 w2  = λ2 w2 

 
When we extend these considerations to numerous input data matrices, we 
notice that the w's are found the eigen vectors of the patterned covariance 
matrix, (Xi′YY′ZZ′YY′Xj). Similarly, when we have output data blocks 
scattered in the network, we get analogous patterned covariance matrices. 
 
Units of paths. The paths that are allowed can be very general. The 
following table shows possible 'units' in paths.  
 

 Paths Interpretation 
1 X One block. We get PCA or PCA-types of 

solutions. 
2 X1 ⇒X2 Two blocks. We get linear regression. 
3 X1 ⇒X2 ⇒X3 Multi-block extensions of linear regression. 
4 X1  

⇓ 
X2 

Multi-block extensions of PCA-type of 
solutions with the role of variables and 
samples exchanged. 

5 X2 ⇒X3  
⇑ 
X1 

Here we want the regression to be done with 
components generated from X1. 

6 X1 ⇒ X2  
 ⇓ 
 X3 

Here we want to study possible changes in 
the response values even if we have not been 
able to observe or measure the 
corresponding X-values. 

7 X1 ⇒ X2  
 ⇑ 
 X3  

Here are two ‘sources’ X1 and X3 that 
influence on the data block X2. 

 
 
These are a few possible parts of paths that the algorithms can carry out. 
These models can be combined arbitrarily into a large and complex network. 
The only requirement is that the number of samples/variables in two 
succeeding blocks, Xk and Xk+1, are correct. If Xk ⇒ Xk+1, the number of 
samples (rows) in Xk and Xk+1, is the same, while if Xk ⇓ Xk+1, the number of 



variables (columns) must be equal. Note that type 5 in the table can be 
interpreted as that we want to be able to predict values in X3 from observing 
samples of type X1. It is an example of making predictions of response 
variables although we are not able to measure the response variables.  
 It is an important aspect of the methods that if we have one input and 
one output data matrix, and all matrices are equal, X1=X2=X3=…, we get the 
PCA solution for each data matrix. Thus, when there are small changes 
between the data blocks, the score vectors found will describe the changes in 
the samples and the loading vectors the changes in the variables. 
 
 
 


