
 
4. Causal structure in data 
 
Suppose that (x1, x2, … , xJ) are random variables with a covariance matrix Γ. Suppose further that 
they depend on the variables (t1, t2, …) in a following way, 
 
  x1 = p11 t1 + p12 t2 + … + p1A tA 
  x2 = p21 t1 + p22 t2 + … + p2A tA 
(6)  … 
  xJ  = pJ1 t1 + pJ2 t2 + … + pJA tA 
 
In a vector/matrix notation (6) can be written as x=Pt. (When working with data it corresponds to 
the rows of X=TPT). If the t-variables are mutually uncorrelated, the equations (6) imply that we 
can write Γ=PDPT, where D is a diagonal matrix containing the variances of the t's. For the 
computed loadings we use the same notation. This situation corresponds to that the data are centred 
and loadings are generated such that that the matrix of score values has orthogonal columns. This 
amounts to stating that the score vectors (ti) in (1) are mutually orthogonal, ti

Ttj=0 for i≠j. (Note that 
this D may be different to the D in (1). D in (1) is a scaling matrix that depends on the procedure 
and the actual choice of scaling). The coefficients in P (J×A) tell us how the variables are related. 
Following table shows three examples. 
 
  Ex. l     Ex. 2   Ex. 3 
x t1 t2 t3  t1 t2 t3  t1 t2 
x1 x x   x x   x  
x2 x x   x x   x  
x3 x x    x x  x  
x4 x  x   x x   x 
x5 x  x   x x   x 
x6 x  x  x  x   x 
Table 1. Schematic illustration of sizes of loading coefficients, P. 
 
Cells in the table marked by x indicate that the corresponding loading coefficient is different from 
zero. The unfilled part thus consists of zeros. In the first example there are only non-zero loadings 
for the first latent variable. The variables x1-x3 have non-zero loadings on the second latent variable, 
while x4-x6 on the third. We see this type, when we work with psychometric data, see the discussion 
on the Spearman thesis in ref 10. The first latent variable explains all the variables, while the 
variables can be grouped in relation to the other latent variables. In the second example each of the 
ten variables can be explained by two latent variables. In the third examples the first latent variable 
explains x1-x3, while the second explains x4-x6. It indicates that the two sets of variables are 
mutually uncorrelated. 
 The non-zero coefficients can be generated as the ones that are not statistically 
significant. We can also prescribe certain coefficients to be non-zero and estimate the loading in 
relation to this pattern of non-zero loading values. In this case we study how well the loading 
pattern describes the present variables.  
 The latent variables are derived as linear combinations of the original variables as 
shown in the following set of equations, 
 



  t1 = r11 x1 + r21 x2 + … + rJ1 xJ  
(7)  t2 = r12 x1 + r22 x2 + … + rJ2 xJ  
  … 
  tA = r1A x1 + r2A x2 + … + rJA xJ  
 
If the t's are uncorrelated, the equations (7) imply that D=RTΣR, where D is the diagonal matrix of 
the variances of the t's. If P has full rank, R is defined as R=PT-1. In the numerical computations 
there are different ways to define R. The equations (7) are useful, when you want to study the 
independence and conditional independence among the x-variables.  
 Sometimes we require a special structure in the coefficient matrices P or R. An 
example is when we require P to be lower triangular. In that case the equations (6) can be written as 
 
  x1 = p11 t1 
  x2 = p21 t1 + p22 t2  

x3 = p31 t1 + p32 t2 + p33 t3  
(8)  … 
  xJ  = pJ1 t1 + pJ2 t2 + … 
 
This makes interpretation of the loadings simpler. E.g., x1 is the same as t1, x2 depends on t1 and t2, 
and so on. Also, e.g., p33 can be interpreted as the part of x3 that cannot be described by x1 and x2. 
When P is a lower triangular matrix, R will also be.  
 The presentation in this section has been based on one block of variables (x1,x2, …) or 
one block of data X that is being described by latent variables (t1,t2, …) or one block of score data, 
T. But we will be working with several blocks of X-data. The same considerations (e.g. patterns of 
non-zeros) or special structure (e.g. lower triangular loading matrix) apply to each block. 
 
 
 
5 Measures of fit and changes 
 
We shall here discuss the concept of J-divergence. It is a useful concept, when we analyse a loading 
matrix that has been computed in path analysis. The importance of J-divergence is due that it can be 
applied in the analysis of the decompositions of data matrices that are of reduced rank. Thus it 
applies in the analysis of paths that has been carried out according to the H-principle. The theory 
and applications of J-divergence is analogous to the use of the maximum likelihood, ML, as an 
estimation method. Therefore, we shall briefly review the ML approach, and point out the similarity 
of J-divergence (see below) to the ML approach.  

We shall consider the case that the random variable follows a multivariate normal 
distribution, X~N(μ,Σ), where we assume that μ is zero. In the ML approach the log-likelihood 
function is often used to measure fit and changes in parameter estimates. It is given by 
 
(9)  Ν(Ε) = c - I (log (|Σ| + tr(Σ-1S) )/2, 
 
where c is a constant and S the sample covariance matrix, S=XΝX/I. From a theoretical point of 
view it is comfortable to work with the function (9). If Σ1 is the maximum likelihood estimate for Σ 
under null-hypothesis and Σ2 the estimate under a reduced (nested) hypothesis, the theory tells us 
that the difference 
 



(10)  2(Ν(Σ2) - Ν(Σ1)) = - I (log(|Σ2|/|Σ1|) + tr ((Σ1
-1 - Σ2

-1)S)) 
 
approximately will follow a Π2-distribution with degrees of freedom equal to the difference 
between the number of parameters at the two hypothesis. (10) is often used to test the effect of 
adding the number of parameters by 1 and comparing (10) to the critical value of Π2-distribution 
with one degree of freedom. The disadvantage of using this procedure is that the function (9) is 
unstable, when data has reduced rank. In the case of reduced rank the expression contains the ratio 
of two determinants that are both close to zero. It is possible to show that the determinants are 
related to the size of the score vectors in data. It is easy to show examples, where arbitrary small 
score vectors become significant, when using (9) or (10), although they have no predictive ability. It 
is instructive to look closer at the differential of (9), 
 
(11)   dΝ = N tr( Σ-1 - Σ-1S Σ-1)d Σ 
 
The equation shows that optimal Σ is one, where S is a generalised inverse of Σ-1, Σ-1 = Σ-1S Σ-1.  

From equation (11) we see that Σ-1S should be close to the identity matrix I. When we work 
with reduced rank, we also need that ΣS-1 is close to I. This can be obtained by working with J-
divergence, 

 
(12)   J = tr( S Σ-1 +  S-1Σ - 2 I)/2 
 
The theory associated with (12) is the same or similar to (9) and (10). It is derived from testing 
equality of two covariance matrices, see ref 10. It is instructive to look at (12) in terms of the eigen 
values of S Σ-1. If (8i) are the eigen values, it is simple to show that  
(13)  J = ½ ∋ (1 - 8i)2/8i 
 
The equation (13) shows that the ratio of variances from S and Σ-1 should be both close to one and 
different from zero, if J in (13) is to be small. The differential of J is given by 
 
(14)   dJ = ½ tr( S-1 - Σ-1S Σ-1)d Σ 
 
If we compare (11) and (14) we see that (14) will be close to (11), when the inverse Σ-1 is close to 
S-1. Equations (11) and (14) give an intuitive background for that the theory of J-divergence is 
similar to the ML approach, although the equations (9) and (12) look different. But the advantage of 
working with (12) and (14) is that the expressions can be modified such that they also can be used 
in the case of reduced rank in data, see next section. Furthermore, we work with the expressions in 
the case of reduced rank in the same way as in case of full rank. Thus, the criteria we use are well 
motivated, when data are not of full rank. 
 
 
6 Sequential estimation of loading coefficients 
 
When working with paths we may get many loading matrices. It is sometimes convenient to analyse 
a loading matrix closer. We often want e.g., revise the values in the loading matrix, when 'almost 
zero' elements are put to zero. We shall briefly describe closer how we can revise the estimates of 
the loading matrix.  The procedure below has given a loading matrix P=P0, such that the sample 
covariance matrix S is approximately S�P0P0Ν. Here we suppose that the score vectors have been 



scaled to unit length. The algorithms associated with the H-principle in the path analysis always 
provide with a matrix R=R0 such that R0ΝP0= I, where I is the identity matrix with number of 
diagonal elements equal to the number of score vectors. The task we consider here is to find a 
simple or a significant form of the loading matrix. The matrix P that we find may contain only 
significant non-zeros. It may also contain the best estimates according to some pattern of non-zeros, 
cf. Table 1. Or it may contain a combination of these two, i.e., significant loading values in a given 
pattern of non-zero loading values. 
 We shall use the following notation: 
 
  S=P0P0

T,   S+=R0R0
T,   Σ=PPT,   Σ+=RRT. 

 
The matrix R in the procedure below is computed as R=P(PTP)-1. At the start the matrix P is a zero 
matrix. We fill it out by non-zeros until the matrix Σ is sufficiently 'close' to S according to the J-
divergence. Note that the number of columns in P can be smaller than the number of columns in P0. 
There are three steps in filling out P: 
 
1. Find the next element in P that should be considered as non-zero. 
2. Estimate the values of all non-zero elements in P. 
3. Judge the improvement and closeness to P0. 
 
There are many ways to handle each of the three steps. We shall here only consider one approach of 
each. 
 
Step 1. We are to find a new loading matrix P1, P1=P + c Eij, where Eij has 1 as element (i,j) and 
zero for others. It is natural to choose the next non-zero element that gives the maximal increase in 
[tr(P1P1

TS+)-tr(PPTS+)]. If we solve the equation Μ[tr(P1P1
TS+)-tr(PPTS+)]/Μc=0, it is shown in 

Appendix 1 that a solution is given by 
 
(15)   c = - pj

Tui/(uii) 
 
Here pj is the j-th column of P and ui the i-th column of U=S+=(uij). It gives an optimal increase as, 
 
(16)   [tr(P1P1

TS+)-tr(PPTS+)] = (pj
Tui)2/(uii) 

 
The task is thus to find the element in P that gives the maximal value of 
 
(17)  max  (pj

Tui)2/(uii), for (i,j) within the pattern of actual or 
required non-zeros. 
 
Step 2. Previous step gave a candidate for the next non-zero element. We need to revise the 
estimates of present non-zero elements in the light of the new one. If we differentiate J with respect 
to an element in P, we get from (14) 
 
  ΜJ/Μpij = ½ tr( S-1 - Σ-1S Σ-1)(ei pj

T + pj ei
T) 

  
Here we need an expression for ΜΣ/Μpij. From Σ =PPT=p1 p1

T + p2 p2
T + …, we derive ΜΣ/Μpij 

=ei pj
T + pj ei

T. Here ei=(0,.,0,1,0,.), where the 1 is at the i-th element. If we require ΜJ/Μpij=0, we 
get 



 
tr( S-1 pj ei

T) = tr(Σ-1S Σ-1 pj ei
T) =  tr(Σ-1S RRT pj ei

T) = tr(Σ-1S R ej ei
T) 

 
This gives 
 
  ui

T pj = (Σ-1S R)ij  ( the (i,j)-th element of Σ-1S R). 
  
If we write out the linear equations, we get 
 
(18)   u1i p1j + u2i p2j + ... + uJi pJj = (Σ-1S R)ij 
 
The equation (18) is used to find pj. Some of the p-values in (18) can be zero and therefore are not 
in the equations. There is one equation for each non-zero element in pj. Therefore (18) will give us 
a quadratic coefficient matrix that is positive definite. The part of the coefficient matrix U=S+ that is 
used in (18) will typically be of reduced rank. Therefore, some care must be given in finding the 
solution pj. Note that both R=P(PTP)-1 and Σ-1=R RT depend on P. Thus, some few iterations are 
necessary to get convergence. The starting values are the previous values of non-zero elements in P 
and the value c in (15) for the estimate of the last non-zero one. The task of (18) is to provide with a 
small adjustment of the values of the non-zero elements. 
 
Step 3. The starting point is the expression for the J-divergence, (14), that we need to truncate to fit 
data with reduced rank. The products S Σ-1 and S-1Σ  are both positive definite. They can therefore 
be written as CCT and CT-1C-1, resp. It gives 
 
  J = tr( S Σ-1 +  S-1Σ - 2 I)/2 = tr( (C - CT-1)(C - CT-1)T)/2 
 
When we truncate, we use C as C≅RTP0 og CT-1≅ (R0ΝP)Ν. It gives 
(19)   J ≅ tr( (RΝP0 - (R0

TPT) (RTP0 - (R0
TP)T)T)/2 = ∋ fij

2/2, 
 
where F=RTP0 - (R0

TP)T. Both RTP0 and (R0
TP)T= PTR0 approach the unity matrix of appropriate 

size, when P is filled out (and R computed as R=P(PTP)-1). The filling out of P stops, when J is 
sufficiently small or F can be judged as a random matrix. 
 
 
 
 
 
 


