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Figure 1. Schematic illustration of instrumental and response data. 

1 Partitioning of data 
 
Industrial companies carry out many types of measurements in order to secure the quality 
of their products. Measurements may be carried out online or sampled at specific time 
intervals for further analysis. 
 
 
 
Industrial data are often of different kinds. Some measurement values may come from 
optical or spectral instruments, others from mechanic or electrical ones. Optical 
instruments may have many variables, i.e., it may provide with say, 1056 measurement 
values for each sample that is measured, thus generating 1056 variables. Mechanic 
instruments, on the other hand, may give only few values as a result of measuring a 
sample or as results at a given time point. When there are many variables, it is usually 
most appropriate to model the data by finding a latent structure in data that can do the 
task that is needed. This is done by weighing the variables to generate the latent structure. 
If there are many variables and of different kinds, like optical, mechanic, chemical, 
electrical and so on, it may not be good to treat variables as if they all were of the same 
kind. It may be necessary to divide the data into data blocks and use the weighing 
procedures separately for each block. 
 
When working with industrial data, the data are often of very different types. The 
situation is best illustrated by the schematic example that is shown in Figure 1.  

 
It is supposed here that the instrumental data X consists of three parts and response data 
Y of two parts. We shall now briefly describe a standard modelling procedure and some 
problems, when there are different types of variables.  

When the data are modelled, a weight vector w is computed, which reflects how well 
the instrumental data describe Y. The weight vector is used to compute a score vector 
t=Xw. The weight vector consists of three parts that correspond to the partition of X, 
w=(w1,w2,w3). The score vector is the sum of the corresponding three parts, t=X1w1+ 
X2w2+ X3w3. If the chemical measurements are e.g., NIR measurements containing 1056 
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Figure 2. A schematic illustration of the modelling task. 

values, w2 will contain 1056 values. The engineering measurements might be only say, 
20 values for each sample. That would mean that w1 contains 20 values. The practical 
problem is that the weight vector w is scaled such that it gets the length one. This means 
that the 20 values in w1 get the same ‘importance’ as 20 values of the 1056 ones among 
w2. It follows that the importance of w1 is scaled down. This may be not desirable, if X1 
is in fact good for describing the response data or some of them. There is also a practical 
problem, when there are many response variables that are of different kinds. This can be 
illustrated by two sets of response variables. Often there are some few quality variables 
among the response variables, while there may be more variables among them that 
represent the chemical results in question. There may be say, 3 quality variables and 10 
chemical ones. It may happen that that X can describe Y1 well, but there may be 
difficulties in using X for describing Y2. It may advantageous to divide Y into the two 
parts and treat them separately. There are many ways to take into account the partition of 
X=(X1,X2,X3) and Y=(Y1,Y2). If each part of X is used separately, it may be desirable to 
have one set of score vectors for each Xi, i=1,2,3. The modelling task with three X-blocks 
and two Y-blocks is schematically illustrated in Figure 2. 
 

The figure illustrates 
that the task is to use 
each Xi, i=1,2,3 to 
model each Yj, j=1,2. 
Each Xi will have a 
decomposition of the 
kind, 
 
Xi=Ti Pi

T+Xi0, i=1,2,3. 
 
The matrix of score 
vectors Ti=(ti,1,…,ti,Ai) 
will represent the latent 
structure in Xi that the 
description (regression) 
is based upon. Thus each 
Yj will be described by 

T1, T2 and T3. It may be necessary to conclude that for instance t1,3 ,…t1,A, only 
contribute to Y1 but not to Y2. In this case only t1,1 and t1,2 contribute to both Y1 and Y2, 
but later score vectors derived from X1 only contribute to Y1. If there is only one latent 
structure Ti associated with each Xi, it simplifies the interpretation of the latent structure. 
If there is more than one latent structure for Xi, the interpretation of the results may be 
difficult. Let us take an example. The engineering measurements may be some initial 
conditions for the process in question. It may be desirable to find ‘good’ initial 
conditions. The latent structure can be used to find these good conditions, which should 
be used. When working with several response variables, it is an important issue, if one 
should work with one latent structure or develop one latent structure for each response 
variable. Experience has shown that we typically need more than one latent structure for 
obtaining good predictions, when there are several response variables.  
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2 Tasks of modelling data 
 
When the data is partitioned as described above, there may be as a result many data 
blocks, both X’s and Y’s. The user of a modelling task like this is interested in knowing 
not only how each part is doing the job, but also how it compares to a more overall 
modelling task. Typical requirements are considered closer. 
 
• Comparison to an overall model, X→Y. If the data is not partitioned at all, specific 

results can be obtained. Partitioning of data, X and Y, should improve the modelling 
task. The user is interested in knowing what improvements there are. 

• Significant dimension in each Xi→Yj. It is important that only score vectors that can 
describe Yj are used for describing Yj. It may disturb the modelling task, if say 6 
score vectors are kept for describing Y2, when only 2 are needed. But 6 might be 
needed for Y1. That Y1 might need many score vectors should not influence on the 
modelling of other Y’s. This task is considered closer in section 6. 

• Contribution at each step. At each step there are found score vectors from the X’s. 
The user wants to know the contribution that is obtained for each of the Y’s. 

• Marginal contribution of score vectors. If the score vector say, t1,2 is used for 
describing both Y1 and Y2, the user wants to know the contribution of t1,2 to the task. 
This would be the marginal contribution of the score vector. The score vector t1,2 
contributes together with other score vectors to say, Y1, but it may be interesting to 
know how much it contribute, if it was alone. 

• Total contribution of Xi to Yj. A part of the score vectors Ti associated with Xi 
contributes to the description of Yj. It is useful to know the total contribution of Xi in 
describing Yj. 

• Separate contribution of Xi to Yj. It is natural to check what can be obtained, if only 
Xi is used to describe Yj. This result should be reported for comparison. 

• Individual response variable. If it is desired to get best possible predictions for each 
response variable, they are treated separately. It means that we loop over each 
response variable and leave the others out. The network of data blocks are then used 
to estimate the parameters between data blocks. This being carried out for each 
response variable will show what can be done for the given network of data blocks. 

 
We see that there are many requirements to the modelling task. The important issue is to 
keep separate, what is a part of the multi-block data analysis and what part is a 
comparison with other views of the modelling task. – Note that in the analysis some or all 
of the Y’s can be the X’s. 
 

3 The principle of optimisation 
 
Background 
The basic purpose of the mathematical modelling task is to provide with a model that 
gives good predictions. In order to arrive at such a model it is important to be aware of 
that the modelling task has two independent features. This will be explained in terms of a 
linear regression model, X→y, (one response variable), the linear least squares solution 
b, b=(XTX)-1XTy and normally distributed data. Using standard assumptions, it follows 
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Figure 3. Schematic illustration of the optimization tasks. a) X→Y, b) X1→Y and X2→Y, 
c) X→Z→Y.  

that the residuals, y-ŷ, are stochastically independent of the precision, (XTX)-1. One can 
show that this implies that the size of improvement in fit due to a score vector t, 
|yTt|2/(tTt), is independent of the variance of the associated regression coefficients, 
σ2/(tTt). In PLS regression it is suggested to find w such that (yTt) is maximised. Does 
this secure that the score vector is large and thus that the variance is small? The answer is 
positive, which follows from the Cauchy-Schwarts inequality, |yTt| ≤ |y|×|t|. 
 
Approach  
In the general case we seek a weight vector w such that |q|2=|YTt|2=|YTXw|2 is as large as 
possible. The solution is given by finding the eigen vector associated as a leading eigen 
value of the set of equations, 
 
(1)  wTXTYYTXw = λ w 
 
The situation is schematically illustrated in part a) in Figure 3. The task is to find w such  
 

that the associated score vector generates as large Y-loading vector q as possible. In b) in 
the figure the task is to find w1 and w2 such that the Y-loading vectors, q1 and q2, which 
are generated, become as large as possible. At the optimisation task it is required to find 
w1 and w2 such that q=q1+q2 is as large as possible. In c) the task is to estimate 
regression coefficients, Bx and Bz, such that when a new X-sample, x, becomes available, 
it is possible to use it to estimate a Z-sample z0, z0=Bxx, and to use z0 to estimate an Y-
sample y0, y0=Bzz0. It is desirable to obtain as reliable predictions of Y-samples as 
possible. Therefore, the optimisation task is to find w such that the resulting Y-loading 
vector is as large as possible. The Y-loading vector q is computed as q=YTtz=YTZqz= 
YTZZTt=YTZZTXw. The optimisation task is here to maximize |q|2. 

In summary, the principle behind the optimisation tasks is to maximise the size of the 
resulting loading vectors that are at the end of the ‘network of data blocks’. When this 
principle is used, it is usually necessary to scale the data e.g., to unit variances within 
each data block. The issue of scaling is not considered closer here.  
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Figure 4. Illustration of the modeling task. 

4 Criteria for optimisation tasks 
 
It is now considered closer how the criteria for optimisation are formulated for multi-
block data analysis. In order to simplify the formulae the situation specified in Figure 4 is 
chosen as a starting point. The task here is to compute one set of score vectors, one for 
each of the X’s. It is assumed that X1 only describes Y1. This can be due to that at 
previous step it was found that there is no further relationship between X1 and Y2. It can 
also be a part of the model specification that X1 only models Y1. 
 

X2 is used to model both Y1 and Y2. But X3 only models Y2. This specification is 
sufficiently simple, and includes all details.  
 
At Y1 there are two loading vectors, q11 and q12. Following the recommendation above 
the total loading q11+q12 should be as large as possible. Similar holds for the loading of 
Y2, q22 and q23. Thus the task is to find w1, w2 and w3 such that the total size of Y-
loadings  
 

|q11 + q12|2 + |q22 + q23|2 = w1
TX1

TY1Y1
TX1w1 + 2w1

TX1
TY1Y1

TX2w2 +  
 

w2
TX2

T(Y1Y1
T+Y2Y2

T)X2w2 + 2w2
TX2

TY2Y2
TX3w3 + w3

TX3
TY2Y2

TX3w3  
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becomes as large as possible. Using the Lagrange multiplier technique the terms  
λi(wi

Twi-1), i=1,2 and 3, are added to the equation. Differentiating with respect to wi, the 
following set of equations are obtained, 
 

X1
TY1Y1

TX1w1 + X1
TY1Y1

TX2w2 = λ1 w1 
X2

T(Y1Y1
T+Y2Y2

T)X2w2 + X2
TY2Y2

TX3w3 = λ2 w2 
X3

TY2Y2
TX2w2 + X3

TY2Y2
TX3w3 = λ3 w3 

 
Consider now the general case, where there are L X-data blocks, X=(X1,X2,…,XL), and 
M Y-data blocks, Y=(Y1,Y2,…,YM). The set of equations can be viewed as a collection 
terms of the following type, 
 
  Gij = Xi

T(δi1Y1Y1
T +δi2Y2Y2

T + … +δiMYMYM
T)Xj,  for i,j=1,2,…,L. 

 
Here δim=1, if Xi is modelling Ym and zero otherwise. If G is the data matrix containing 
these terms, G=(Gij), the equation to solve is given by Gw=(λ1 w1, λ2 w2, …, λL wL)T, with 
w=(w1, w2, …, wL). This equation is solved iteratively with starting values of wi as the 
eigen vector of the leading eigen value of the Giiwi= λi wi. At each iteration all of the 
weight vectors wi’s must be scaled to unit length. Thus, at each iteration Gw is 
partitioned appropriately, and wi’s computed as having unit length. We have observed 
that the speed of convergence is the same as at the power method of computing the 
largest eigen value and associated eigen vector. Thus, typically less than 20-30 iterations 
are necessary to find all weight vectors (w1, w2, …, wL). 

When the weight vectors are found, following are computed for i=1,…,L: 
 
  Score vector:   ti=Xiwi 
  Loading vector: pi=Xi

Tti 
  Scaling constant: di=1/(ti

Tti) 
 
Furthermore, the Xi’s are adjusted for what has been found: 
 
  Adjustment of Xi: Xi ← Xi – di ti pi

T 
 
The adjustment of each Xi gives orthogonal score vector for Xi, but score vector of one 
data block Xi are not orthogonal to score vectors of another data block Xj.  

The adjustment of each Ym can be carried out as follows. The score vectors that have 
been found to contribute to Ym are collected in a matrix Ta,m. Then, linear least squares 
estimates of the regression coefficients are given by Bam=(Ta,m

TTa,m)-1Ta,m
T Ym, 

 
  adjustment of Ym: Ym ← Ym –Ta,m Bam  
 
If all of the score vectors that contribute to Ym are collected together, Tm=(T1,m,…,TA,m), 
the regression coefficients are computed as Bm = (Tm

TTm)-1Tm
T Ym. The estimated 

response values are given by Ŷm= Tm Bm. 
In the case of many X-blocks it may be necessary to carry out different adjustments 

and to compute estimated response values in different ways. When working with an Y, 
say Ym, then at each step there have been collected score vectors that are collected in a 
matrix Ta,m. It may be better to work with the PLS solution compared to linear least 
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squares solution. Similarly, when computing final estimates of the response matrix, Ŷm, 
there is a collection of score vectors in Tm, each of which has marginally a significant 
contribution to Ym. Here also it might be better to use the PLS solution to the linear least 
squares one.  

When we have been working with multi-block methods on industrial data, it has been 
necessary to identify the part of each Xi (variables) that should be used. This can be 
carried out, e.g., by studying how Xi models Y. Variables that do not satisfy (3) below for 
t=xi (and A=1) and any Y-variable are automatically excluded. This procedure can be 
improved, but this is not studied further here. 

If we want to study especially how Xi contributes to the modelling of Ym, the score 
vectors associated with Xi are selected, and we use them to see how Xi separately 
contributes to Ym.  

In the practical application of the present multi-block methods there are many 
practical issues that need to resolved, like the ones mentioned above. These practical 
issues are not treated closer in this paper. 

The criterion above can take special form depending on the structure of the multi-way 
blocks. Consider one example. Suppose that there is only one X, but the Y’s are a part of 
X, Yi=Xi, i=1,2,…,L. This corresponds to the case, where we want to use all of X to 
describe the parts of X. In this case there is only one equation to solve, 
 
(2)  XT(δ1X1X1

T +δ2X2X2
T + … + δLXLXL

T)X w= λ w 
 
Here again δi=1 if Xi is taking part in the modelling task and zero otherwise. Some further 
types of models are considered later. 
 
 
 
5 Extensions in production environments 
 
The present approach can be extended to a network of data blocks. The X-matrices would 
play the role on input data blocks, while the Y-matrices are the output matrices. In 
between there can be any structure of data blocks that are consistent with the X- and Y-
matrices. The task would be to find the weight vector associated with each X-matrix, 
such that the score vector propagated in the network would result in maximal Y-loading 
vectors. Here we shall consider as an example a situation that appears when working with 
production data. It will be briefly indicated how to find the weight vectors in different 
situation. The detailed analysis is not shown here, because it is a straight forward 
extension of the methods presented in previous sections. 
 
 
5.1 Production data 
We shall now consider some extensions to situations that are useful in studying the 
development of production processes. As a start consider the situation in Figure 5. 
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Figure 5. Schematic illustration of three stages in a production process. 

At stage 0 there are available samples, X0, that are characteristic for the beginning of the 
production process. At stage 1 a new set of samples are made available, X1. The results of 
stage 1, quality requirements and other measures, are collected in a matrix Y1. At stage 2 
there have similarly been collected X-data of process measurements and Y-data of 
quality, performance and other response data. This setup is sufficient for the present 
analysis, but methods are the same if more stages are of interest to model.  

The data samples can be viewed such that one sample is the result of one 
production process, i.e., one production process generates one sample (row) in X0, X1, 
Y1, X2 and Y2. When a new sample x0,0 is available at stage 0, it may be needed to 
estimate the samples x10, y10, x20 and y20, where x10 is a new sample at stage 1 for X1 and 
similarly for the others. At stage 1, when values of x10 are available, it may be needed to 
estimate the samples y10, x20 and y20, where y10 is the output of stage 1, x20 the expected 
results of the process variables at stage 2, and y20 the output of stage 2. Finally, when x20 
has become available at stage 2, it may be needed to estimate the output, y20. 
 
5.2 Modelling seen from Stage 0 
Figure 6 illustrates schematically the available data and the task of modelling. 
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Figure 6. Schematic illustration of the modelling task as seen from Stage 0. 
 
The estimation of each of x10, y10, x20 and y20, when x00 is known can be carried out by a 
standard regression analysis. We could carry out the four regressions X0→X1, X0→Y1, 
X0→X2 and X0→Y2. But this may not be the best approach. The objective of modelling is 
to provide with as good predictions of y10 and y20 as possible. For that purpose good 
values of x10 and x20 are needed, which give good estimates of y10 and y20. Thus, the best 
approach need not be to carry out the regressions X0→X1 and X0→X2, but to model the 
path in question. The task is to start with a loading vector w0 for X0, compute the score 
vector t0=X0w0, and then compute the loading and score vectors that propagate further in 
the network. The optimisation task is to find w0 that maximizes the total size of the 
loading vectors for the output matrices Y1 and Y2. The optimisation task is not shown 
here, but in next section it is shown for the next modelling stage. When the weight vector 
w0 has been found, score and loading vectors for the later matrices are found, and they 
are used to compute the regression coefficients between data blocks as shown previously. 
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5.3 Modelling at Stage 1. 
At Stage 1 the results of the samples x00 and x10 are known. The task of modelling is 
schematically illustrated in Figure 7. 

Figure 7. Schematic illustration of the modelling task at stage 1. 
 
X0 and X1 are the input data blocks. We want to use the model to estimate y10, x20 and 
y20, when the samples x00 and x10 have become available. The task here is to find a weight 
vector w0 for X0 and a weight vector w1 for X1 such that the resulting loading vectors for 
Y1 and Y2 are as large as possible. There are two loading vector computed for both Y1 
and Y2. The loading vectors for Y1 are computed as q10=Y1

Tt0= Y1
TX0w0 and q11=Y1

Tt1= 
Y1

TX1w1. Those of Y2 are similarly computed as q20=Y2
Tt20= Y2

TX2X2
TX0w0 and 

q21=Y2
Tt21= Y2

TX2X2
TX1w1. For q1=q10 + q11 and q2=q20 + q21 it is desired to make 

|q1|2+|q2|2 as large as possible. By expressing |q1|2+|q2|2 in terms of w0 and w1, we arrive 
at  
 

|q1|2+|q2|2 = w0
TX0

TEX0w0 + 2 w0
TX0

TEX1w1 + w1
TX1

TEX1w1  
 
+ w0

TX0
TFX0w0 + 2 w0

TX0
TFX1w1 + w1

TX1
TFX1w1, 

 
where E=Y1Y1

T and F= X2X2
T Y2Y2

T X2X2
T. Adding the side conditions λi (wi

Twi – 1) 
for i=0,1, the Lagrange techniques results in the set of equations 
 

X0
T H X0 w0  + X0

T H X1 w1 = λ0 w0 
X1

T H X0 w0  + X1
T H X1 w1 = λ1 w1 

 
Here H=E+F. These equations show how the set of equations are defined for a larger 
network of data blocks. There is one equation for each input data matrix. The matrix H 
collects the matrices associated with the ‘paths’ from input matrices to the output ones. 
When the weight vectors w0 and w1 have been found, the score and loading vectors of 
later data blocks are determined, and used to compute the regression coefficients between 
the data blocks as described previously in this paper. 


