
Non-linear regression. The Gauss-Newton method 
Non-linear methods are challenging. It is often difficult to obtain appropriate convergence 
using traditional methods. The principles of H-methods have been applied to many areas 
within non-linear modelling. It has been found that these are superior to traditional methods. 
Here we shall consider estimation of parameters in non-linear models. 

In non-linear regression the parameters of the model appear in a non-linear way. The 
models are often derived from some theoretical considerations. Examples of how models are 
derived are as follows. 
 

Solution to differential equations: 
 

y(x) = θ1/(θ1 - θ2){exp(-θ2x) - exp(-θ1x)} 
 

y(x) = α/{1 + exp[-(λ + kx)/δ]}δ 
 

Models from approximations: 
 

y(x) = β0 + β1exp(β2x) 
 

Models from the shape of data: 
 

y(x) = β0 + β1exp(β2(x-μ1)) + β3exp(β4(x-μ2)) 
 
In these models there is only one x-variable. When there are several x-variables and many 
parameters, it may be a difficult task to estimate the parameters from the given data. A 
standard procedure is to use the Gauss-Newton procedure, which is briefly described in the 
following. 

Suppose that the mathematical model is y=f(x;β). The parameters β are found by 
minimizing the sum of squared errors, 
 
  minimize (y - f(x;β))T(y - f(x;β) . 
 
If we differentiate the expression and equate the derivative to zero, we get 
 

  - 2F(x;β)Ty + 2F(x;β)Tf = 0 
 

where F(x;β)=∂f(x;β)/∂β. This leads to the equations 
 
(13)  F(x;β)Tf  = F(x;β)Ty. 
 
If the model is linear, F is the design matrix X, f is Xβ and the normal equations to be solved 
are XTXβ=XTy. When f is non-linear, we expand it by a Taylor series, 
 
(14)  f(x;β) ≅ f(x;β0) + F(x;β0)(β - β0) 
 
If we insert the right hand side of (8) into (7) and rearrange terms, we get 
 
(15)   F(x;β0)TF(x;β0) (β - β0) =  F(x;β0)T(y - f(x;β0)). 
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This has the form of the normal equations with X=F(x;β0). These equations are solved for 
Δβ=β - β0. The new solution is then β = β0 + Δβ. The equations (14) and (15) are iterated with 
β0 in (14) is now the revised solution from (15). The iterations stop, when the β does not 
change or the residual sum of squares does not reduce. When there are many parameters, it 
may be difficult to obtain convergence, if the linear least squares solution is used. There have 
been suggested many methods to obtain convergence. One approach, the Hartley corrections, 
is not to use all of Δβ as a correction, but Δβ/2 or Δβ/2k, k=0,1,... and see if the residual sum 
of squares gets diminished. Another approach is to use Ridge regression (also called 
Marquardt) corrections, where we start by letting the Ridge constant be e.g., λ= 10-8. If the 
residual sum of squares does not diminish, we increase λ, e.g., 10λ. If we can not find λ that 
reduces the residual sum of squares, the iterations stop. There are many other methods that 
have been proposed.  

The H-method computes the solution vector to (15) for each dimension, 
 
 ba= d1 r1 q1 + …+ da ra qa, for a=1,...,A (or K). 

 
Then a trial for a solution is computed as 
 
 Δβ = step × ba,    for step=1/25, 1/24,…,1/20=1. 
 
For each of A×6 solution vectors, Δβ’s, the residual sum of squares, |y - f(x;β)|2, is computed. 
The dimension, a=a0, and step=step0, are chosen that give the minimum value of the residual 
sum of squares. When Δβ has been found, the iteration starts over again as described above. If 
none of the A×6 solution vectors can decrease the residual sum of squares, the computations 
stop.  

At convergence we have score and loading vectors from the last iteration. This can be 
used for studying the properties of the solution vector. 

We shall consider an example, where for most methods it has been difficult to obtain 
appropriate solutions at convergence. 

Sum of Gaussian curves. In analytical chemistry we sometimes see need for estimating 
the parameters in a model that is a sum of Gaussian curves. An example of such a function is 
the model, 
 
(16) y(x) = c1 exp(-(x - a1)2/b1) + c2 exp(-(x - a2)2/b2) + c3 exp(-(x - a3)2/b3).  
 
The matrix F of the differential of the parameters will have 9 columns. If the estimates of the 
parameters (ai,bi,ci) are not very close to the true values, the matrix F will be close to singular. 
In these cases traditional algorithms will not converge or give bad estimates. If we on the 
other hand use the H-method at each step, we typically get convergence. Let us consider a 
numerical example. Consider the data that are shown in Figure 15. The figure shows the 
experimental data. The scatter of points clearly indicates three peaks. It is therefore natural to 
expect the model (16) to be appropriate. An initial estimate of the parameters is 
 
(a1,b1,c1, a2,b2,c2, a3,b3,c3) = (4.4, 0.11, 0.6, 4.8, 0.30, 0.7, 5.8, 0.20, 1.1) 
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Figure 16. Estimated curve using exact solutions and 
modifications of them. 
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Figure 15. Experimental data, where sum of three Gaussian curves are 
expected to fit data. 

 
  
The initial values are 
found by identifying 
each Gaussian curve 
approximately with 
the peaks in data. 
With these initial 
values the matrix F is 
not close to be 
singular. But the 
condition number, the 
ratio of the largest 
and smallest singular 
value of F, is 261.8. 
This value of the 
condition number is 
sufficiently large that 
it gives an unstable 
solution for many methods. 
 
When we use the exact solution and modification of it, we get after 100 iterations the results 
shown in figure 16. 

The parameter estimates are as follows. 
 
(a1,b1,c1, a2,b2,c2, a3,b3,c3)=( 2.65  0.01 -0.03  5.09  1.12  0.54 6.05 0.10  0.75) 
 
The negative value c1=-0.03 indicates that we are subtracting the first Gaussian curve from 
the other two. This is not the interpretation that can be expected, when looking at Figure 16. 
The residual sum of squares is Σ(yi - ŷi)2=0.160. This shows that we have obtained a relatively 
good fit, although the shape of the estimated function is not as expected.  

In Figure 17 we show the results of applying the H-method. At each step there is 
computed 9×6=54 possible 
solutions, 
 
Δβ = step × ba, 
 
29 iterations are needed to get 
convergence. At most iterations 
the dimension chosen is 3-5, and 
step-size 1, ½ or ¼. The 
parameter estimates are now as 
follows. 
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Figure 17. Estimated curve using low rank solutions of 
the H-method. 

 
(a1,b1,c1, a2,b2,c2, a3,b3,c3)=( 4.55  0.14  0.54  5.23  0.09  0.59 6.00  0.15 0.99) 
 
These values look natural. The interpretation of e.g., the first set is that the mean value of the 
first curve is at 4.55, the standard deviation is σ=0.26 (σ2=b1/2) and the first curve has the 
weight c=0.54. The fit is here much 
better, Σ(yi - ŷi)2=0.034. 
 

In conclusion, the H-method has 
been applied to many non-linear 
modelling tasks. The general results 
are that the H-method is superior to 
full-rank solution methods, which are 
standard in program packages and 
textbooks on non-linear modelling. 
When the H-method is applied, the 
convergence results are superior, the 
interpretation the parameter is better 
and predictions are more stable than 
obtained by traditional methods of 
non-linear modelling.  

 
 


