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Figure 1. Schematic illustration of 
vectors involved in optimisation. 
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Figure 2. Schematic illustration of vectors in 
optimisation in multi-block regression. 

1 Path regression methods 
 
The methods presented in previous sections have been extended to structured multi-block models. In 
the following we shall only show the ‘unit setups’ and how the optimisation tasks are carried out. 

Optimisation in linear regression. In section 6 the optimisation task is explained closer. It is 
repeated here to show that the same principle is used in other optimisation tasks. The task is here, see 
Figure 1, to find a weight vector w such that the 
Y-loading vector q is as large as possible, max 
|q|2= max |YTt|2 = max |YTXw|2, subject to |w|=1. 
The solution is the eigen vector associated with 
the largest eigen value of  
 
 XTYYTX w = λ w. 
 
The matrices X and Y need to be scaled column-
wise before analysis. The regression coefficients 
are computed as B=X+Y. Thus, the analysis can 
be viewed as building up X+ as long as there is 
support for X+ in data. 
 
 
Multi-block regression. Here the X-data 
has been split up into sub-blocks, X=(X1,X2, 
… , XL). The response data has also been 
split into sub-blocks, Y=(Y1,…,YO). In 
Figure 2 there are two X-blocks and two Y-
blocks. The task is to find weight vectors w1 
for X1 and w2 for X2 such that the resulting 
Y-loadings are as large as possible, 
 

maximise |q11+q21+q12+q22|2, 
 
subject to |w1|=|w2|=1. Here qij=Yj

TXiwi. 
Initially the data matrices X and Y are 
scaled column-wise. The optimisation task 
leads to the following set of equations, 
 
 
 
 

X1
T(δ11Y1Y1

T+δ12Y2Y2
T)X1w1 + X1

T(δ11Y1Y1
T+δ12Y2Y2

T)X2w2 = λ1 w1 
 
X2

T(δ21Y1Y1
T+δ22Y2Y2

T)X1w1 + X2
T(δ21Y1Y1

T+δ22Y2Y2
T)X2w2 = λ2 w2 

 
Initially, δ11=δ12=δ21=δ22=1. The weight vectors w1 and w2 are found, when all δ’s are 1. Then, for 
each Yi, the score vectors are ranked according to importance in describing Yi. E.g., suppose that the 
score vectors, t1 and t2, are ranked according to how well they describe Y1. Let t2 be the most 
important. Then Y1 is adjusted for t2. If t1 is not significant in describing the reduced Y1, it is 
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Figure 3. Schematic illustration of vectors in 
optimisation of a path of three data blocks. 

dropped and δ11 is sat to zero, δ11=0. Similarly, the modelling of Y2 is evaluated. On the basis of this 
evaluation the δ’s are revised, and a new set of weight vectors are found. This is one step of the 
analysis. When all appropriate vectors have been found, both X’s and Y’s are adjusted for what has 
been found and the analysis starts over again. If no significant score vectors are found, the analysis 
stops. The analysis can be viewed as building up four sets of X+, which is used in the regression 
coefficients, B=X+Y. The estimated equations are Ŷ1=X1B11+X2B21 and Ŷ2=X1B12+X2B22, with 
Bij=Xij

+Yj. For a presentation of Multi-block methods see Ref 8. 
 
Path modelling. A path model is a 
directional set of data block. There can be 
any number of input or starting data blocks. 
There can also be several output or ending 
data blocks. Each data block can lead to one 
or more data blocks. In Figure 3 is shown 
three data blocks in a path. The task is to 
find a weight vector w such that the X3-
loading vector q3 has maximal size.  It is 
computed as q3=X3

Tt2=X3
TX2q2= 

X3
TX2X2

Tt1= X3
TX2X2

TX1w. The solution is 
the eigen vector associated with the largest 
eigen value of 
 
  X1

TX2X2
TX3X3

TX2X2
TX1 w = λ w. 

 
When w has been found, the associated vectors are computed. The analysis can be viewed as 
building generalised inverses for X1, X1

+, and for X2, X2
+.  The estimated X2-bloc, X2,est, is computed 

as X2,est=X1B1, where B1=X1
+X2. Similarly, the estimated X3-block is X3,est=X2B2, where B2=X2

+X3. 
When a new X1-sample, x10, is available, the regression coefficients B1 are used to estimate an X2-
sample. B2 is used to take this estimated sample for estimating an X3-sample.  

In path models new samples from the input data blocks are propagated along the path. The path 
models, thus, provides with estimates of samples for all later data blocks.  The uncertainties of the 
estimated samples in the path are larger the later the block is in the path. There can also be a data 
block, which is not functioning well in the path. E.g., in Figure 20 it might be that X2 is not good in 
explaining X3, while X1 may be. When working with path models it may be important to detect, if 
some data blocks are blocking in this way the modelling task.   

In natural sciences it is common to explain phenomenon by a system of differential equations. 
But the measurement situations often give many measurement values due to cheap measurement 
equipments like sensors, optical devices etc. When there are many measurement values (variables) at 
each time point, it may be more efficient to model the situation as one path, X1 → X2 → … → XL. 

Process data today are basically multi-block data. Process factories carry out numerous types of 
measurements to control the processes. These processes can often be organised as stages, where data 
from one stage make a data block. An example of an application of such kind is presented in Ref 9. 

The processes can be organised in stages, where there is a path model for each stage. When the 
processes of a stage are completed, there will be estimates for the results later in the path. Then there 
can a path model for the next stage that can provide with estimates of processes that succeed the 
stage. Thus, path modelling is a flexible way of modelling large interconnected systems, where many 
possible paths can be modelled. 
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Figure 4. Schematic illustration of vectors in 
optimsation in growth models. 

Two independent sources. Growth curve 
models. Denote by Y the data matrix in the 
example in section 22. The rows refer to the 
judges. Often there is available experimental data 
that show the ‘properties’ of the judges. A 
regression model, Y=XB+residual, will show how 
these properties explain the ratings. Columns of Y 
represent the food type. Taste and other features 
of the food may influence on the ratings. Thus, a 
regression model, YT=ZB+residual, may be used 
to study the influence of these features. Often 
there are interactions between the properties of 
the judges and features of the food. It may be 
better to combine these two models into one, 
Y=XBZ+residual. Element-wise the model is 
yij=xiBzj+εij. 

Growth curve models can be formulated in 
this way, see e.g. Ref 10. The matrix X can be the 
growth curves and experimental data. Z can be 
design conditions or similar ones.  

The data can be depicted as shown in Figure 4. We are looking for a weight vector w for X and a 
weight vector v for Z, such that  
 

max |q|2 = max |YTXw|2 
 

max |g|2 =max |YZTv|2 
 
The weight vectors w and v are found by solving the eigen value systems, 
 
  XTYYTX w = λ w  and  ZYTYZT v = μ v. 
 
When the weight vectors have been computed, the resulting vectors are computed, t=Xw, q=YTt, 
g=ZTv and u=Yg. Then the matrices are adjusted  
 
  X ← X – d t pT,   with p=XTt, d=1/(tTt) 
 
  Z ← Z – e b gT,   with b=Zg, e=1/(gTg) 
 
It may happen that at this step X or Z do not contribute to the modelling of Y. It may also happen 
that there are conflicting results from X and Z, which gives small values of (tTYg). The practical 
issues in the computations are not considered closer here. The generalised inverses, X+ and Z+, are 
computed as described above. The solution B=X+YZ+ is computed using these inverses. Note that 
there can be different number of terms obtained for X than for Z. The dimension used for X may be 
say 5, while for Z only 2. Studying the score and loading vectors for X and Z often give good insight 
into the results obtained for Y. 

The models of this type are traditionally analysed by maximum likelihood methods, Ref 10. They 
typically assume full rank models. But data is usually not of full rank except the model is small, only 
few variables and samples. The maximum likelihood methods break down, when there is reduced 
rank in data, while present method gives reliable results. 


