
Polynomial surfaces in low dimension  
 
When working with optical instruments we sometimes see a slight curvature in data. An 
example is high fat content in fish measured by a NIR instrument. If the curvature is 
parabolic, a second order surface in score variables may be appropriate. If the curvature is S-
shaped, a third order surface may be needed. The estimation of polynomial surfaces in score 
variables is briefly reviewed in the case of optimal response estimation. 

A linear and quadratic model is given by 
 

(17) y = bTx  +  xT F x  + residual 
 
Here x=(x1,x2,...) are the numerical variables that are measured. The transformation from 
sample space to score space is t=RTx. Inserting this in (17) we get, 
 
(18) y = bT (RT)-1 RT x  +  xT R R-1 F (RT)-1 RT x 
 
   =  (R-1 c)T ( RT x)  + (RT x)T R-1 F (RT)-1 (RT x) 
 
   =  cT t  +  tT E t, 
 
where 
 
 PD = (RT)-1,  c = (PD)T b,  and   E = (PD)T F PD 
 

Consider now the estimation task for this type of model. If all score vectors are selected, 
there is a 1-1 relationship between these two models. Parameters of (18) are estimated and 
using the transformation t=RTx, parameters of (17) are obtained. But usually only A score 
vectors are selected. We can still go from (18) to (17) by using t=RA

Tx, but now the value of 
x that will give the optimal value of (17) will not be unique. We shall first consider how to 
determine an optimal value of the score vector.  

By differentiating y with respect to t, we find that the optimal t-value is t = -½E-1c. Thus 
we need both c to be different from zero and E to be invertible. In Gauss elimination, when 
computing the inverse, on can create zeros row-wise. This means that zeros below the 
diagonal are created variable-wise. The estimation procedure that fits to this way of 
computing the inverse can be carried out as described in the following. 

In the linear model a score vector was sought that maximised |yTt|2=|yTXw|2. A natural 
extension of this criterion is to find w that maximises 

 
(19)  |yTt|2 + |yTt⊕2|2, 
 
where the notation t⊕n for the n-th power of t, t⊕n=(t1

n, t2
n, ...), is used. Similarly, the 

coordinate wise product of two vectors, t and s, is denoted by t⊕s, t⊕s=(t1s1, t2s2, ...). (In a 
MATLAB notation the product is t.∗s.). When such w has been found, the regression 
procedure gives us the coefficients c1 and e11, E=(eij). Then X is adjusted for this score vector, 
t1. Also y is adjusted for what has been found, c1t1+e11t1

⊕2. The next task is to find t=t2, 
which is done by maximising the term, 
 
 |yTt|2 + |yTt⊕2|2 + |yT(t⊕t1)|2, 
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where y is now the reduced y. When w has been found, t2 is computed, t2=Xw, and X is 
adjusted by t2, and y is adjusted by c2t2+e22t2

⊕2+2e21t1⊕t2. (E is assumed symmetric). Next 
task is to find t=t3. It is done by maximising, 
 
 |yTt|2 + |yTt⊕2|2 + |yT(t⊕t1)|2+ |yT(t⊕t2)|2. 
 
Like described above, the results are used to estimate the parameters c3 and (e31,e32,e33). Using 
the first three rows and columns of E, the preliminary optimal values of first three score 
values, (t1,t2,t3), can be computed. In order to obtain good model results it is important not to 
include score variables that do not improve the prediction of the model. The linear and 
squared terms are always included in the model even if they are not significant. This is done 
in order to obtain the optimal solution. The cross product terms are excluded, if they are not 
significant. The selection of score vectors stops, when linear, squared and cross-product terms 
are all not significant.  

The result is a unique score vector, topt, which is a solution to the linear equation. The 
eigen values of E will show the type of solution obtained. If all eigen values are negative, it is 
a maximum. The corresponding sample vector is computed as xopt=(PD)topt. It is studied 
closer, where topt is located in score space. If it is far away from other score values, one 
should be careful in using the results. Similarly, xopt can be compared to the present samples. 

The estimation procedure that has been reviewed here is presented in details in Ref 6. 
Here models of linear and second order polynomials in score vectors have been presented. In 
Ref 5 it is formulated for polynomials in score vectors of any order.  

It is also important here to exclude x-variables that do not contribute to the modelling 
task. The method of section 9 is used to remove variables that do not have significant weights. 

In summary, we have presented a method of finding optimal polynomial in score vectors. 
It has been used to show how optimal responses can be determined, when data is of reduced 
rank, which is commonly the situation in nature and industry. If there is detected curvature in 
data, then it is important to account for it in the modelling task. The numerical procedure is 
fast and efficient in finding optimal polynomials in score vectors. 


